
Cray Inc.

The Gemini Network

Rev 1.1

2 Cray Inc. 8/17/10

© 2010 Cray Inc. All Rights Reserved. Unpublished Proprietary Information. This unpublished work is protected by
trade secret, copyright and other laws. Except as permitted by contract or express written permission of Cray Inc., no
part of this work or its content may be used, reproduced or disclosed in any form.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Autotasking, Cray, Cray Channels, Cray Y-MP, UNICOS and UNICOS/mk are federally registered trademarks and
Active Manager, CCI, CCMT, CF77, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Ada,
Cray Animation Theater, Cray APP, Cray Apprentice2, Cray C90, Cray C90D, Cray C++ Compiling System, Cray
CF90, Cray EL, Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA, Cray MTA-2, Cray
MTX, Cray NQS, Cray Research, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+, Cray SHMEM, Cray S-MP, Cray
SSD-T90, Cray SuperCluster, Cray SV1, Cray SV1ex, Cray SX-5, Cray SX-6, Cray T90, Cray T916, Cray T932,
Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, Cray Threadstorm, Cray UNICOS, Cray X1,
Cray X1E, Cray X2, Cray XD1, Cray X-MP, Cray XMS, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4,
Cray XT5, Cray XT5h, Cray Y-MP EL, Cray-1, Cray-2, Cray-3, CrayDoc, CrayLink, Cray-MP, CrayPacs, CrayPat,
CrayPort, Cray/REELlibrarian, CraySoft, CrayTutor, CRInform, CRI/TurboKiva, CSIM, CVT, Delivering the
power…, Dgauss, Docview, EMDS, GigaRing, HEXAR, HSX, IOS, ISP/Superlink, LibSci, MPP Apprentice, ND
Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RapidArray, RQS,
SEGLDR, SMARTE, SSD, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted
UNICOS, TurboKiva, UNICOS MAX, UNICOS/lc, and UNICOS/mp are trademarks of Cray Inc.

For further information on the Gemini network or other Cray products please contact crayinfo@cray.com

For sales inquiries please contact: 1-877-CRAY-INC (1-877-272-9462) domestic or +1-651-605-8817 international

mailto:crayinfo@cray.com

The Gemini Network 1 Overview of the Gemini Network

8/17/10 Cray Inc. 3

1 Overview of the Gemini Network

Gemini is the new network for Cray’s supercomputer systems. It develops the highly
scalable Seastar design used to deliver the 225,000 core Jaguar system, improving
network functionality, latency and issue rate. Gemini uses a novel system-on-chip
(SoC) design to construct direct 3D torus networks that can scale to in excess of 100,000
multi-core nodes. Gemini is designed to deliver high performance on MPI applications
and filesystem traffic, in addition it provides hardware support for global address space
programming. Gemini enables efficient implementation of programming languages
such as Chapel, UPC and Co-Array Fortan on massively parallel systems.

Figure 1 Cray XT 3D Torus Network

Each Gemini ASIC provides two network interface controllers (NICs), and a 48-port
“Yarc” router1. Each of the NICs has its own HyperTransport 3 host interface, enabling
Gemini to connect two Opteron nodes to the network. This 2 node building block
provides 10 torus links, 4 each in two of the dimension (‘x’ and ‘z’) and 2 in the third
dimension (‘y’), as shown in Figure 2. Traffic between the two nodes connected to a
single Gemini is routed internally. The router uses a tiled design, with 8 tiles dedicated
to the NICs and 40 (10 groups of 4) dedicated to the network.

1 The Yarc router was first used in Cray’s X2 vector system.

1 Overview of the Gemini Network Rev 1.1

4 Cray Inc. 8/17/10

Figure 2 Each SeaStar router provides one node of the 3D Torus, Gemini provides two.

The block structure of the Gemini design is illustrated in Figure 3. The Netlink block
connects the NICs to the router. It also handles changes in clock speed between the NIC
and router domains. The supervisor block connects Gemini to an embedded control
processor (L0) for the blade and hence the Cray hardware system supervisor (HSS)
network, used for monitoring the device and loading its routing tables.

Figure 3 Gemini blocks

Gemini is designed for large systems in which failures are to be expected and
applications must run on in the presence of errors. Each torus link comprises 4 groups
of 3 lanes. Packet CRCs are checked by each device with automatic link level retry on
error. In the event of the failure of a link, the router will select an alternate path of
adaptively routed traffic.Gemini uses ECC to protect major memories and data paths
within the device.

For traffic designated as adaptive the Gemini router performs packet by packet adaptive
routing, distributing traffic over lightly loaded links. With 8 links connecting each
Gemini to its neighbors in the ‘x’ and ‘z’ directions and 4 links in the ‘y’ dimension,
there are multiple paths available. Hashed deterministic routing can be selected as an
alternative when a sequence of operations must be performed in order.

SeaStar Gemini

Nic 0

Nic 1
Router

HT3

HT3

N
etlink

Supervisor

L0

The Gemini Network 2 Gemini NIC

8/17/10 Cray Inc. 5

Gemini provides the ability for user processes to transfer data directly between nodes
without OS intervention. For example, one process in a parallel job can initiate a put
directly from its memory to that of another process. To do this it specifies the data (or
source address), the destination virtual addresses, the destination process id and the size
of the transfer. Additional hardware primitives include remote get, atomic operations,
block transfer and completion notification. The Gemini NIC is a hardware pipeline that
maximizes the performance of these simple operations. More complex communications
protocols such as message passing and TCP/IP are implemented using these primitives.

User space communication is supported by the User Gemini Network Interface (uGNI)
and Distributed Memory Application (DMAPP) APIs. These libraries are called by
Cray MPI and Shmem. DMAPP is also used in the run time for Cray Chapel, UPC and
Co-Array Fortran compilers. Inter-kernel communication is provided using Kernel
Gemini Network Interface (kGNI) which provides both messaging and RDMA. The
Lustre filesystem is supported via a Lustre Network Driver (LND) for kGNI. Other
filesystems such as NFS, GPFS and Panasas are provided via DVS, the Cray Data
Virtualization Service layered over LND. TCP/IP communication over the Gemini
Fabric is provided by the IP over Gemini Fabric (IPoGIF) module.

2 Gemini NIC

Each Gemini ASIC has a pair of NICs, each with its own HyperTransport 3 interface
(known as the HT Cave and shown on the left hand side of Figure 4). The NICs are
connected to the Gemini router via the Netlink block (on the right hand side of
Figure 4). The NIC is a hardware pipeline. The node issues commands, writing them
across the HyperTransport interface. The NIC packetizes these requests and issues the
packets to the network, with output flowing from left to right at the top of Figure 4.

Figure 4 Block Diagram of the Gemini NIC

Packets are routed across the network to a destination NIC. The input pipeline flows
from right to left at the bottom of the figure. The Gemini network employs a 3-tuple, the

H
T3

 C
av

e

vc0

vc1

vc1

vc0

LB Ring

LB
LM

N
L

FMA

CQ

NPT

RMT net req

H
A
R
B

net
rsp

ht p
ireq

ht treq p

ht irsp

ht np
ireq

ht np req

ht np req
net req

ht p req O
R
B

RAT

NAT

BTE

net
req

net
rsp

ht treq np
ht trsp net

req
net
req

net
req

net
req

net
reqnet req

ht p req
ht p req

ht p req net rsp

CLM

AMO net rsp headers

T
A
R
B

net req
net rsp

S
S
I
D

R
ou

te
r T

ile
s

2 Gemini NIC Rev 1.1

6 Cray Inc. 8/17/10

Network Address, to specify a logical, address in a user process on a remote node. The
address consists of a processing element identifier (or PE), a Memory Domain Handle
(MDH) associated with a memory segment registered at the remote node, and an offset
into this segment. This 58-bit network address extends the physical address space of the
node, enabling global access to all of the memory of a large system.

Gemini supports both virtual addressing and virtual PEs. The MDH is combined with
the offset to generate a user virtual address in the remote process.Virtual PEs (ranks in
MPI parlance) used by the application are translated on output by the Node Translation
Table (NTT) to obtain the physical PE. Constraints on physical resources limit the size
of the NTT, only the top 12 bits of the PE are translated. Very large jobs are layed out
in a regular fashion with low bits of the virtual and physical PEs being equal, or they can
use physical PEs.

2.1 Fast Memory Access (FMA)

Fast Memory Access (FMA) is a mechanism whereby user processes generate network
transactions, puts, gets and atomic memory operations (AMO), by storing directly to the
NIC.The FMA block translates stores by the processor into fully qualified network
requests. FMA provides both low latency and high issue rate on small transfers. On
initialization the user process is allocated one or more FMA descriptors and associated
FMA windows. Writes to the FMA descriptor determine the remote processing element
and the remote address associated with the base of the window. A write of up to 64 bytes
to the put window generates a remote put. Storing an 8 byte control word to the get
window generates a get of upto 64 bytes or a fetching AMO. FMA supports scattered
accesses by allowing the user to select which bits in an FMA window determine the
remote address and which the remote PE. Having set the FMA descriptor appropriately
one can, for example, store a unique word of data to each process in a parallel job by
simply storing a contiguous block of data to the FMA window. The DMAPP library
provides a light-weight wrapper around this functionality for the Cray compilers and
libraries.

FMA supports source-side synchronization methods for tracking when put requests
have reached a globally ordered point at the target and when responses to get requests
have reached a globally ordered point in the local node. It is also possible to issue puts
that generate destination-side synchronization events at the target node, enabling a
process on that node to be notified of new data, or to poll a single completion queue for
its arrival.

2.2 Block Transfer Engine (BTE)

The Block Transfer Engine (BTE) supports asynchronous transfer between local and
remote memory. Software writes block transfer descriptors to a queue and the Gemini
hardware performs the transfers asynchronously. The BTE supports memory operations
(put/get) where the user specifies a local address, a network address and a transfer size.
In addition the BTE supports channel operations (send) where the user specifies a local
address and a target, but no target address. Channel semantics require the user to have
pre-posted a receive buffer with the target BTE. By default there is no guarantee of

The Gemini Network 3 Gemini Router

8/17/10 Cray Inc. 7

completion ordering in block transfers issued by a given Gemini. Fence operations are
used where necessary to ensure that one transfer is completed before another starts.

In general FMA is used for small transfers and BTE for large. FMA transfers are lower
latency. BTE transfers take longer to start, but once running can transfer large amounts
of data (upto 4GB) without CPU involvement.

2.3 Completion Queue (CQ)

Completion queues provide a light-weight event notification mechanism. The
completion of a BTE or FMA transaction can generate an event in a user (or kernel
thread) specific queue. Completion events can be generated on either the source or the
target node. They include both user data and transaction status information.

2.4 Atomic Memory Operation (AMO)

Gemini supports a wide range of atomic operations, those with put semantics such as
atomic add and those with get semantics such as conditional swap. Gemini maintains an
AMO cache, reducing the need for reads of host memory when multiple processes
access the same atomic variable. Host memory is updated each time the variable is
updated (lazy update mechanisms are also provided to reduce load on the host
interface), but network atomics are not coherent with respect to local AMD64 memory
operations - all processes must use a Gemini application interface to update an atomic
variable.

2.5 Synchronization Sequence Identification

Gemini uses a mechanism known as Sequence Identification to track the set of packets
that make up a transaction. Every packet in the sequence contains the same
Synchronization Sequence Identification (SSID). Packets can be delivered in arbitrary
order; each contains a network address and can be committed to memory as soon as it
arrives - there is no need for reorder buffering. The sequence as a whole completes and
CQ events are generated when all packets have been delivered. This mechanism is
implemented using the SSID and Output Request Buffer (ORB) blocks on the output
side and the Receive Message Table (RMT) block on the input side. The RMT caches
active SSID state avoiding a network round trip for performance critical operations. It
also matches BTE send requests to queued receive descriptors.

3 Gemini Router

The building block for the Gemini router is the tile (see Figure 5). Each tile contains all
of the logic and buffering associated with one input port, one output port, an 8×8 switch

3 Gemini Router Rev 1.1

8 Cray Inc. 8/17/10

and associated buffers. In Gemini, each tile's switch accepts inputs from six row buses
that are driven by the input ports in its row, and drives separate output channels to the
eight output ports in its column. Using a tile-based microarchitecture facilitates
implementation, since each tile is identical and produces a very regular structure for
replication and physical implementation in silicon.

Figure 5 Gemini 48-port tiled router

The tile-based design is best understood by following a packet through the router. A
packet arrives in the input link of a tile. When the packet reaches the head of the input
buffer, a routing decision is made to select the output column for the packet. The packet
is then driven onto the row bus associated with the input port and buffered in a row
buffer at the input of the 8×8 switch at the junction of the packet's input row and output
column (at the crosspoint tile). At this point the routing decision must be refined to
select a particular output port within the output column. The switch then routes the
packet to the column channel associated with the selected output port. The column
channel delivers the packet to an output buffer (associated with the input row) at the
output port multiplexer. Packets in the per-input-row output buffers arbitrate for access
to the output port and, when granted access, are switched onto the output port via the
multiplexer.

Gemini uses virtual cut-through flow control across the network links, but uses
wormhole flow control internally due to buffer size constraints. Network link input
buffers are deep enough to account for credit round-trip latency and the maximum size
packet.

Packets are variable size and divided into 24-bit phits (physical units) for transmission
over network links. Write request packets have a 7-phit header, up to 24 phits of data
and a single phit end-of-packet that denotes the last phit of a packet and contains status
bits for error handling. A 2-phit response packet is generated for each request (3 phits
on error). Get responses include a payload of up to 24 phits.

The Gemini Network 3 Gemini Router

8/17/10 Cray Inc. 9

The head phit controls routing, it specifies the destination, the virtual channel and
details of how the packet is to be routed (see Figure 6).

Figure 6 Gemini Packet Format

Each Gemini has a unique 16-bit identifier, specified by the destination field within
each packet. NICs and hence Opteron nodes are specified using a 2-bit identifier for the
source (SrcID) and destination (DstID). The combined 18-bit address uniquely
identifies every node in the system. The v field specifies the virtual channel; Gemini
uses one virtual channel for requests and another for responses. The r, a and h fields
control routing. If the r bit is set, then the packet will be source routed and must contain
a routing vector in the payload. Source routing is only used for diagnostics. If the a
(adapt) bit is set, the packet is routed adaptively, otherwise the packet is routed using a
deterministic hash constructed from the source and destination ids and (optionally if the
h bit is set) the remote address. The fields shaded gray in Figure 6 contain side band data
used by the link control block.

An 8-byte write requires an 11-phit request (7 header, 3 data and 1 EOP) and a 2-phit
response. A 64-byte cache-line write requires 32 request phits (7 header, 24 data, and 1
EOP) and 2 response. A 64-byte get comprises an 8-phit request (7 header plus EOP)
and a 27-phit response (2 header, 24 data and EOP)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit 0 h a r=0 v p c

phit 1 p c

phit 2 p c

…

last phit R R R 1 p c

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit 0 h a r=0v=0 p c

phit 1 F ca rmt b p c

phit 2 p c

phit 3 vm ra p c

phit 4 dt pt p c

phit 5 p c

phit 6 p c

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

phit n p c

(phit n+1) p c

(phit n+2) p c

Data Payload (up to 24 phits)

addr
[39:38]

SrcIDDstIDsource[15:0]

Network Request Packet Format

address[23:6]

destination[15:0]

sizedata[19:0]

mask[15:0]

BTEvc

data[63:42]

data[41:20]

MDH[11:0]

packetID[11:0]SSID[7:0]

General Network Packet Format

destination[15:0]

address[37:24]ptag[7:0]

vc

cmd[5:0]

vc

payloadoptional hash bitspayload

reserved
addr[45:40]

CRC-16 ok

payload

4 Gemini Software Rev 1.1

10 Cray Inc. 8/17/10

3.1 Gemini Fault Tolerance

Gemini provides a 16-bit packet CRC, which protects up to 64-bytes of data and the
associated headers (768 bits max). Within each Gemini, major memories are protected
using ECC.

Gemini links provide reliable delivery using a sliding window protocol. The receiving
link checks the CRC as a packet arrives, returning an error if it is incorrect. The sending
link retransmits on receipt of an error. The link block includes a send buffer of sufficient
size to cover the round trip.

The CRC is also checked as a packet leaves each Gemini and as it transitions from the
router to the NIC, enabling detection of errors occurring within the router core. If the
checksum is incorrect, the packet is marked as bad and passed on; it will be dropped by
the destination Gemini.

Completion events include details of the status of each transaction allowing software to
recover from errors. HSS/OS interfaces allow the reporting of any of these errors at the
point of occurrence.

Each 3D Torus link is made up of 4 Gemini links. The Gemini adaptive routing
hardware will spread packets over the available links. If a link fails, the adaptive routing
hardware will mask it out. In the event of losing all connectivity between two Gemini,
it is necessary to route around the problem (this also happens when a board is removed).
The management software quiesces the network, computes new routing tables and then
re-enables the network.

4 Gemini Software

Gemini supports both kernel communication, through a Linux device driver and direct
user space communication, where the driver is used to establish communication
domains and handle errors, but can be bypassed for data transfer. Parallel applications
typically use a library such as Cray MPI or SHMEM in which the programmer makes
explicit communication calls.

Alternatively they may uses a programming model such as UPC, Chapel or Co-Array
Fortran in which the compiler automatically generates the inter-process communication
calls. Both approaches are layered over the user level Gemini Network Interface (uGNI)
and/or the Distributed Memory APPlications (DMAPP) library (as shown in Figure 7)
which perform the Cray network specific operations. Kernel modules such as the Lustre
communicate via the kernel Gemini Network Interface (kGNI).

The Gemini Network 4 Gemini Software

8/17/10 Cray Inc. 11

Figure 7 Gemini Software Stack

Gemini is a connectionless design, rather than creating point to point connections
between processes, a parallel application begins by establishing a communications
domain. Connectionless designs are preferred in High Performance Computing as they
scale well to large system sizes - in particular their memory usage remains constant as
the size of the job increases. Each communication domain specifies a set of processes
(or kernel threads) that are allowed to communicate. Creating a communications
domain is a privileged operation that results in a protection tag being allocated. The
hardware adds this tag to each packet ensuring isolation of communication domains
between users. Each process is also allocated a virtual process id (or rank). The Gemini
NIC performs virtual to physical translations, converting ranks to physical locations.
Any attempt to communicate with a process outside of the communication domain
generates an error. Program initialization follows a sequence of steps in which the
placement scheduler (ALPS) first creates a communication domain and then starts the
user processes. The processes sign on to the communication domain, create their
completion queues and register memory with the communication domain. Having
completed this sequence of steps, the processes in a parallel job can initiate either
put/get or send/receive style communication. These operations are all asynchronous,
with completion events being generated when an operation or sequence of operations
has been completed. This approach promotes programming models in which
communications is initiated early so as to hide latency. Gemini optimizes for this,
supporting both large numbers of pending operations and high issue rates.

Gemini Hardware Abstraction Layer (HAL)

GNI Core

Kernel Gemini Network
Interface (kGNI)

Lustre Network
Driver (LND)

IP over Gemini
Fabric (IPoGIF)

User level Gemini Network
Interface (uGNI) DMAPP

Cray MPI Shmem, UPC, Chapel,
Coarray Fortran

IP stack

OS Bypass

Gemini NIC

User Applications & Third Party Libraries

5 Gemini Packaging Rev 1.1

12 Cray Inc. 8/17/10

4.1 Programming Environment

Cray MPI uses the MPICH2 distribution from Argonne. The MPI device for Gemini is
layered over uGNI (point-to-point) and DMAPP (collectives). Use of FMA gives MPI
applications the ability to pipeline large numbers of small, low latency transfers; an
increasingly important requirement for strong scaling on multi-core nodes. MPI
message matching is progressed by each call or using a helper thread. The Gemini block
transfer engine is used to provide high bandwidth and good overlap of computation and
communication. Cray MPI uses dedicated mailboxes (for frequently used
communication paths) combined with a per-node message queue ensuring that memory
requirements are modest, even on the largest jobs. FMA and AMO transactions are
combined to implement high performance collective operations.

SHMEM provides an explicit one-sided communication model. Each process executes
in its own address space but can access segments of the memory of other processes
(typically the static data segment and symmetric heap) through a variety of put/get calls
and collectives. Cray systems since the T3D have supported SHMEM. Its
implementation for Gemini provides the application programmer with fine grain
control of communication with a minimum of overhead.

Gemini is designed to provide efficient support of emerging Partitioned Global Address
Space (PGAS) programming models as well as MPI. Cray’s Chapel, UPC and Co-Array
Fortran compilers use a common runtime implemented with DMAPP. The DMAPP
library includes blocking, non-blocking and indexed variants of put and get together
with scatter/gather operations and AMOs. This interface is also provided for third
parties developing their own compilers, libraries and programming tools. Compiler
generated communication typically results in large numbers of small irregular transfers.
Gemini’s FMA mechanism minimizes the overhead of issuing them and its high packet
rate maximizes performance.

5 Gemini Packaging

Cray systems are constructed from dual socket Opteron nodes. Four nodes are packaged
on a blade card, eight blades in a chassis and three chassis in a cabinet, for a total of 96
nodes (192 processor sockets) per cabinet. A network mezzanine card is fitted to each
blade. This card contains a pair of Gemini ASICs connected such that each blade
provides a 1×4×1 element of the overall 3D torus. The chassis backplane provides
connections in the ‘z’ direction so that the eight cards in a chassis form a 1×4×8 element
of the torus.

The remainder of the links (88 per chassis) are taken to connectors on the rear of the
chassis. A range of cabling options support different sizes of systems with cabinets
layed out in a 2D grid as illustrated in Table 1, where N is the number of cabinets per
row and R is the number of rows. Each row must have the same number of cabinets.

The Gemini Network 5 Gemini Packaging

8/17/10 Cray Inc. 13

Table 1 Gemini Network Topologies

Restrictions on cable lengths make it impractical to close the torus by running cables
from one end of a row or column to the other. Instead alternate cabinets are cabled
together as illustrated in Figure 8 for a 32 cabinet system. Cables close the ‘x’ and ‘z’
dimensions. An even number of rows is strongly preferred.

Jaguar, the largest system shipped to date, has 200 cabinets arranged in 8 rows of 25
cabinets. The Gemini design, like that of SeaStar, its predecessor, allows large systems
such as Jaguar to be constructed from a single scalable unit, one cabinet, using copper
cables. No external routers are required

Figure 8 Inter-cabinet cabling for 32 cabinets in 4 rows

Class Cabinets Geometry Connectivity

0 1-3 3N×4×8 x between chassis
y within chassis
z within chassis

1 4-16 in one
row

N×12×8 x between cabinets
y within cabinet
z within chassis

2 16-48 in two
rows

N×12×16 x between cabinets in a row
y within cabinet
z connects the rows

3 > 48 N×4R×24 x between cabinets in a row
y between rows
z within cabinet

6 Gemini Performance Rev 1.1

14 Cray Inc. 8/17/10

5.1 Gemini in ‘m’ series systems

Cray’s entry level ‘m’ series systems also use the Gemini interconnect. These systems
comprise a single row of 1-6 cabinets connected in a 2D torus. Single cabinet systems
use a 4×8, 8×8 or 12×8 torus. Multi-cabinet systems use a 4N×24 torus where N is the
number of cabinets.

5.2 Upgrading SeaStar to Gemini

The Gemini mezzanine card is pin compatible with the SeaStar network card used on
Cray XT5 and XT6 systems allowing them to be upgraded to Gemini. The upgrade is
straightforward, each blade is removed and its network card is replaced. There are no
changes to the chassis, cabinets or cabling.

5.3 Cray Models

Cray uses XTn names to denote SeaStar models and XEn names to denote Gemini.

Table 2 Cray Model names

6 Gemini Performance

6.1 Clock Speed

The Gemini NIC operates at 650 MHz, the router at 800MHz and the link SERDES at
3.125GHz. The speed of the HyperTransport interface ranges from 1600MHz to
2600Mhz depending on the node type.

6.2 Latency & Bandwidth

End-to-end latency in a Gemini network is determined by the end point latencies and the
number of hops. On a quiet network, the end-point latency is 1.0μs or less for a remote
put, 1.5μs or less for a small MPI message. The per hop latency is 105ns on a quiet
network.

Name Year Node Gemini Name

Cray XT3 Single socket Opteron nodes

Cray XT4 Single socket Budapest nodes

Cray XT5 2008 Dual socket Barcelona/Shanghai/Istanbul XE5

Cray XT5m 2009 Dual socket Barcelona/Shanghai/Istanbul XE5m

Cray XT6 2010 Dual socket Magny Cours XE6

Cray XT6m 2010 Dual socket Magny Cours XE6m

The Gemini Network 6 Gemini Performance

8/17/10 Cray Inc. 15

The Gemini NIC can transfer 64 bytes of data in each direction every 5 cycles.
Maximum bandwidth per direction is 64 × 650 / 5 = 8.3 GB/s. Injection bandwidths
depend on the speed of the HyperTransport interface and the method of transfer. The
interface is 16 bits wide and transfers data on both edges of the clock, giving a raw
bandwidth of 9.6 GB/sec in each direction at 2400 MHz. On FMA put the
HyperTransport overheads are 12 bytes on up to 64 bytes of data, limiting the peak
bandwidth to 8 GB/sec. For BTE transfers there is a 12-byte read request followed by
a 76-byte posted write for every 64-byte data packet. For symmetric BTE traffic the
peak bandwidth of the host interface is 7 GB/sec in each direction after protocol. The
netlink block injects packets into the router, distributing traffic across the 8 processor
tiles. Each 64-byte write is transferred as 32 × 24-bit request phits (7 header, 24 data and
1 end of packet) with a 2-phit response (3 on error), with each processor tile transfering
one 64-byte packet in each direction every 32 cycles.

Each of the 10 Gemini torus links compises 12 channels in each direction operating at
3.125GHz. Link bandwidths are 4.68GB/sec per direction. Efficiency on 64-byte
transfers is 63%, significantly higher than competing products. Bandwidth after
protocol is 2.9 GB/sec per link per direction. The torus network provides multiple links
between nodes. Packets are adaptively distributed over all of the available links,
enabling a single transfer (a point-to-point MPI message for example) to achieve
bandwidths of 5GB/sec or more. Higher bandwidths can be achieved between processes
on the same node or processes on nodes connected to the same Gemini. Where multiple
user processes or kernel threads are sending data at the same time (the common case for
multi-core nodes), the Gemini NIC can inject packets at host interface bandwidth, with
the router spreading traffic out over all of the available links. Note that the bandwidth
at which a node can send data to multiple destinations or receive data from multiple
destinations exceeds the point-to-point bandwidth between any pair of nodes. The
former is limited by injection bandwidth and the latter is limited by link bandwidth.

6.2.1 Bisection Bandwidth

To determine the bisection bandwidth of a Cray Gemini system, consider the
dimensions of the torus X×Y×Z. Next determine whether the ‘y’ dimension of the torus
is closed. The ‘x’ and ‘z’ dimension are closed in standard configurations. Now
consider the three products

Lz = X×Y×2, Ly = X×Z×Cy, Lx= Y×Z×2

Where Cy is 1 if the ‘y’ dimension is open and 2 if it is closed. Select the smallest of the
three products. This is the number of links crossing the worst case bisection. Gemini
links are bidirectional; so to calculate the bisection bandwidth, multiply the worst case
number of links by twice the link speed.

bandwidth = 2 × links × 4.68 GB/s

6 Gemini Performance Rev 1.1

16 Cray Inc. 8/17/10

For example, in a 40 cabinet system arranged as 4 rows of 10 racks the torus is
10×16×24

Lz = 10×16×2=320, Ly=10×24×2=480, Lx=16×24×2=768

The ‘z’ dimension has the fewest links and so the bisection bandwidth is

2×320×4.68 = 2995 GB/s

6.2.2 Global Bandwidth

Bisection bandwidth is frequently used to characterise the performance of a network,
but it is rare that all processes in one half of the machine communicate simultaneously
with all of the processes in the other half. A more common case is that half of the
communication crosses the bisection and half remains local (see Figure 9), for example
in a global exchange (or all-to-all) or purely random communication.

Figure 9 Global communication pattern

The global bandwidth of a torus network is twice its bisection, 5990GB/s in the 40
cabinet example above.

	The Gemini Network
	1 Overview of the Gemini Network
	2 Gemini NIC
	2.1 Fast Memory Access (FMA)
	2.2 Block Transfer Engine (BTE)
	2.3 Completion Queue (CQ)
	2.4 Atomic Memory Operation (AMO)
	2.5 Synchronization Sequence Identification

	3 Gemini Router
	3.1 Gemini Fault Tolerance

	4 Gemini Software
	4.1 Programming Environment

	5 Gemini Packaging
	5.1 Gemini in ‘m’ series systems
	5.2 Upgrading SeaStar to Gemini
	5.3 Cray Models

	6 Gemini Performance
	6.1 Clock Speed
	6.2 Latency & Bandwidth
	6.2.1 Bisection Bandwidth
	6.2.2 Global Bandwidth

