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1   Overview of the Gemini Network

Gemini is the new network for Cray’s supercomputer systems. It develops the highly 
scalable Seastar design used to deliver the 225,000 core Jaguar system, improving 
network functionality, latency and issue rate. Gemini uses a novel system-on-chip 
(SoC) design to construct direct 3D torus networks that can scale to in excess of 100,000 
multi-core nodes. Gemini is designed to deliver high performance on MPI applications 
and filesystem traffic, in addition it provides hardware support for global address space 
programming. Gemini enables efficient implementation of programming languages 
such as Chapel, UPC and Co-Array Fortan on massively parallel systems. 

Figure 1    Cray XT 3D Torus Network

Each Gemini ASIC provides two network interface controllers (NICs), and a 48-port 
“Yarc” router1. Each of the NICs has its own HyperTransport 3 host interface, enabling 
Gemini to connect two Opteron nodes to the network. This 2 node building block 
provides 10 torus links, 4 each in two of the dimension (‘x’ and ‘z’) and 2 in the third 
dimension (‘y’), as shown in Figure 2. Traffic between the two nodes connected to a 
single Gemini is routed internally. The router uses a tiled design, with 8 tiles dedicated 
to the NICs and 40 (10 groups of 4) dedicated to the network. 

1 The Yarc router was first used in Cray’s X2 vector system.
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Figure 2    Each SeaStar router provides one node of the 3D Torus, Gemini provides two.

The block structure of the Gemini design is illustrated in Figure 3. The Netlink block 
connects the NICs to the router. It also handles changes in clock speed between the NIC 
and router domains. The supervisor block connects Gemini to an embedded control 
processor (L0) for the blade and hence the Cray hardware system supervisor (HSS) 
network, used for monitoring the device and loading its routing tables.

Figure 3    Gemini blocks

Gemini is designed for large systems in which failures are to be expected and 
applications must run on in the presence of errors. Each torus link comprises 4 groups 
of 3 lanes. Packet CRCs are checked by each device with automatic link level retry on 
error. In the event of the failure of a link, the router will select an alternate path of 
adaptively routed traffic.Gemini uses ECC to protect major memories and data paths 
within the device. 

For traffic designated as adaptive the Gemini router performs packet by packet adaptive 
routing, distributing traffic over lightly loaded links. With 8 links connecting each 
Gemini to its neighbors in the ‘x’ and ‘z’ directions and 4 links in the ‘y’ dimension, 
there are multiple paths available. Hashed deterministic routing can be selected as an 
alternative when a sequence of operations must be performed in order. 
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Gemini provides the ability for user processes to transfer data directly between nodes 
without OS intervention. For example, one process in a parallel job can initiate a put 
directly from its memory to that of another process. To do this it specifies the data (or 
source address), the destination virtual addresses, the destination process id and the size 
of the transfer. Additional hardware primitives include remote get, atomic operations, 
block transfer and completion notification. The Gemini NIC is a hardware pipeline that 
maximizes the performance of these simple operations. More complex communications 
protocols such as message passing and TCP/IP are implemented using these primitives. 

User space communication is supported by the User Gemini Network Interface (uGNI) 
and Distributed Memory Application (DMAPP) APIs. These libraries are called by 
Cray MPI and Shmem. DMAPP is also used in the run time for Cray Chapel, UPC and 
Co-Array Fortran compilers. Inter-kernel communication is provided using Kernel 
Gemini Network Interface (kGNI) which provides both messaging and RDMA. The 
Lustre filesystem is supported via a Lustre Network Driver (LND) for kGNI. Other 
filesystems such as NFS, GPFS and Panasas are provided via DVS, the Cray Data 
Virtualization Service layered over LND. TCP/IP communication over the Gemini 
Fabric is provided by the IP over Gemini Fabric (IPoGIF) module. 

2   Gemini NIC

Each Gemini ASIC has a pair of NICs, each with its own HyperTransport 3 interface 
(known as the HT Cave and shown on the left hand side of Figure 4). The NICs are 
connected to the Gemini router via the Netlink block (on the right hand side of 
Figure 4). The NIC is a hardware pipeline. The node issues commands, writing them 
across the HyperTransport interface. The NIC packetizes these requests and issues the 
packets to the network, with output flowing from left to right at the top of Figure 4. 

Figure 4    Block Diagram of the Gemini NIC

Packets are routed across the network to a destination NIC. The input pipeline flows 
from right to left at the bottom of the figure. The Gemini network employs a 3-tuple, the 

H
T3

 C
av

e

vc0

vc1

vc1

vc0

LB Ring

LB
LM

N
L

FMA

CQ

NPT

RMT net req

H
A
R
B

net 
rsp

ht p
ireq

ht treq p

ht irsp

ht np
ireq

ht np req

ht np req
net req

ht p req O
R
B

RAT

NAT

BTE

net 
req

net 
rsp

ht treq np
ht trsp net 

req
net 
req

net 
req

net 
req

net 
reqnet req

ht p req
ht p req

ht p req net rsp

CLM

AMO net rsp headers

T
A
R
B

net req
net rsp

S
S
I
D

R
ou

te
r T

ile
s



2  Gemini NIC Rev 1.1

6 Cray Inc. 8/17/10

Network Address, to specify a logical, address in a user process on a remote node. The 
address consists of a processing element identifier (or PE),  a Memory Domain Handle 
(MDH) associated with a memory segment registered at the remote node, and an offset 
into this segment. This 58-bit network address extends the physical address space of the 
node, enabling global access to all of the memory of a large system.

Gemini supports both virtual addressing and virtual PEs. The MDH is combined with 
the offset to generate a user virtual address in the remote process.Virtual PEs (ranks in 
MPI parlance) used by the application are translated on output by the Node Translation 
Table (NTT) to obtain the physical PE. Constraints on physical resources limit the size 
of the NTT, only the top 12 bits of the PE are translated. Very large jobs are layed out 
in a regular fashion with low bits of the virtual and physical PEs being equal, or they can 
use physical PEs. 

2.1    Fast Memory Access (FMA)

Fast Memory Access (FMA) is a mechanism whereby user processes generate network 
transactions, puts, gets and atomic memory operations (AMO), by storing directly to the 
NIC.The FMA block translates stores by the processor into fully qualified network 
requests. FMA provides both low latency and high issue rate on small transfers. On 
initialization the user process is allocated one or more FMA descriptors and associated 
FMA windows. Writes to the FMA descriptor determine the remote processing element 
and the remote address associated with the base of the window. A write of up to 64 bytes 
to the put window generates a remote put. Storing an 8 byte control word to the get 
window generates a get of upto 64 bytes or a fetching AMO. FMA supports scattered 
accesses by allowing the user to select which bits in an FMA window determine the 
remote address and which the remote PE. Having set the FMA descriptor appropriately 
one can, for example, store a unique word of data to each process in a parallel job by 
simply storing a contiguous block of data to the FMA window. The DMAPP library 
provides a light-weight wrapper around this functionality for the Cray compilers and 
libraries. 

FMA supports source-side synchronization methods for tracking when put requests 
have reached a globally ordered point at the target and when responses to get requests 
have reached a globally ordered point in the local node. It is also possible to issue puts 
that generate destination-side synchronization events at the target node, enabling a 
process on that node to be notified of new data, or to poll a single completion queue for 
its arrival. 

2.2    Block Transfer Engine (BTE)

The Block Transfer Engine (BTE) supports asynchronous transfer between local and 
remote memory. Software writes block transfer descriptors to a queue and the Gemini 
hardware performs the transfers asynchronously. The BTE supports memory operations 
(put/get) where the user specifies a local address, a network address and a transfer size. 
In addition the BTE supports channel operations (send) where the user specifies a local 
address and a target, but no target address. Channel semantics require the user to have 
pre-posted a receive buffer with the target BTE. By default there is no guarantee of 
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completion ordering in block transfers issued by a given Gemini. Fence operations are 
used where necessary to ensure that one transfer is completed before another starts. 

In general FMA is used for small transfers and BTE for large. FMA transfers are lower 
latency. BTE transfers take longer to start, but once running can transfer large amounts 
of data (upto 4GB) without CPU involvement.

2.3    Completion Queue (CQ)

Completion queues provide a light-weight event notification mechanism. The 
completion of a BTE or FMA transaction can generate an event in a user (or kernel 
thread) specific queue. Completion events can be generated on either the source or the 
target node. They include both user data and transaction status information. 

2.4    Atomic Memory Operation (AMO)

Gemini supports a wide range of atomic operations, those with put semantics such as 
atomic add and those with get semantics such as conditional swap. Gemini maintains an 
AMO cache, reducing the need for reads of host memory when multiple processes 
access the same atomic variable. Host memory is updated each time the variable is 
updated (lazy update mechanisms are also provided to reduce load on the host 
interface), but network atomics are not coherent with respect to local AMD64 memory 
operations - all processes must use a Gemini application interface to update an atomic 
variable. 

2.5    Synchronization Sequence Identification

Gemini uses a mechanism known as Sequence Identification to track the set of packets 
that make up a transaction. Every packet in the sequence contains the same 
Synchronization Sequence Identification (SSID). Packets can be delivered in arbitrary 
order; each contains a network address and can be committed to memory as soon as it 
arrives - there is no need for reorder buffering. The sequence as a whole completes and 
CQ events are generated when all packets have been delivered. This mechanism is 
implemented using the SSID and Output Request Buffer (ORB) blocks on the output 
side and the Receive Message Table (RMT) block on the input side. The RMT caches 
active SSID state avoiding a network round trip for performance critical operations. It 
also matches BTE send requests to queued receive descriptors.

3   Gemini Router

The building block for the Gemini router is the tile (see Figure 5). Each tile contains all 
of the logic and buffering associated with one input port, one output port, an 8×8 switch 
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and associated buffers. In Gemini, each tile's switch accepts inputs from six row buses 
that are driven by the input ports in its row, and drives separate output channels to the 
eight output ports in its column. Using a tile-based microarchitecture facilitates 
implementation, since each tile is identical and produces a very regular structure for 
replication and physical implementation in silicon.

Figure 5    Gemini 48-port tiled router

The tile-based design is best understood by following a packet through the router. A 
packet arrives in the input link of a tile. When the packet reaches the head of the input 
buffer, a routing decision is made to select the output column for the packet. The packet 
is then driven onto the row bus associated with the input port and buffered in a row 
buffer at the input of the 8×8 switch at the junction of the packet's input row and output 
column (at the crosspoint tile). At this point the routing decision must be refined to 
select a particular output port within the output column. The switch then routes the 
packet to the column channel associated with the selected output port. The column 
channel delivers the packet to an output buffer (associated with the input row) at the 
output port multiplexer. Packets in the per-input-row output buffers arbitrate for access 
to the output port and, when granted access, are switched onto the output port via the 
multiplexer.

Gemini uses virtual cut-through flow control across the network links, but uses 
wormhole flow control internally due to buffer size constraints. Network link input 
buffers are deep enough to account for credit round-trip latency and the maximum size 
packet.

Packets are variable size and divided into 24-bit phits (physical units) for transmission 
over network links. Write request packets have a 7-phit header, up to 24 phits of data 
and a single phit end-of-packet that denotes the last phit of a packet and contains status 
bits for error handling. A 2-phit response packet is generated for each request (3 phits 
on error). Get responses include a payload of up to 24 phits. 
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The head phit controls routing, it specifies the destination, the virtual channel and 
details of how the packet is to be routed (see Figure 6).

Figure 6    Gemini Packet Format

Each Gemini has a unique 16-bit identifier, specified by the destination field within 
each packet. NICs and hence Opteron nodes are specified using a 2-bit identifier for the 
source (SrcID) and destination (DstID). The combined 18-bit address uniquely 
identifies every node in the system. The v field specifies the virtual channel; Gemini 
uses one virtual channel for requests and another for responses. The r, a and h fields 
control routing. If the r bit is set, then the packet will be source routed and must contain 
a routing vector in the payload. Source routing is only used for diagnostics. If the a 
(adapt) bit is set, the packet is routed adaptively, otherwise the packet is routed using a 
deterministic hash constructed from the source and destination ids and (optionally if the 
h bit is set) the remote address. The fields shaded gray in Figure 6 contain side band data 
used by the link control block.

An 8-byte write requires an 11-phit request (7 header, 3 data and 1 EOP) and a 2-phit 
response. A 64-byte cache-line write requires 32 request phits (7 header, 24 data, and 1 
EOP) and 2 response. A 64-byte get comprises an 8-phit request (7 header plus EOP) 
and a 27-phit response (2 header, 24 data and EOP)
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phit 1 p c

phit 2 p c

…

last phit R R R 1 p c
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phit n p c
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Data Payload (up to 24 phits)

addr
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SrcIDDstIDsource[15:0]

Network Request Packet Format

address[23:6]

destination[15:0]

sizedata[19:0]

mask[15:0]

BTEvc

data[63:42]

data[41:20]
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General Network Packet Format
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payloadoptional hash bitspayload
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CRC-16 ok
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3.1    Gemini Fault Tolerance

Gemini provides a 16-bit packet CRC, which protects up to 64-bytes of data and the 
associated headers (768 bits max). Within each Gemini, major memories are protected 
using ECC.

Gemini links provide reliable delivery using a sliding window protocol. The receiving 
link checks the CRC as a packet arrives, returning an error if it is incorrect. The sending 
link retransmits on receipt of an error. The link block includes a send buffer of sufficient 
size to cover the round trip. 

The CRC is also checked as a packet leaves each Gemini and as it transitions from the 
router to the NIC, enabling detection of errors occurring within the router core. If the 
checksum is incorrect, the packet is marked as bad and passed on; it will be dropped by 
the destination Gemini.

Completion events include details of the status of each transaction allowing software to 
recover from errors.  HSS/OS interfaces allow the reporting of any of these errors at the 
point of occurrence.

Each 3D Torus link is made up of 4 Gemini links. The Gemini adaptive routing 
hardware will spread packets over the available links. If a link fails, the adaptive routing 
hardware will mask it out. In the event of losing all connectivity between two Gemini, 
it is necessary to route around the problem (this also happens when a board is removed). 
The management software quiesces the network, computes new routing tables and then 
re-enables the network.

4   Gemini Software

Gemini supports both kernel communication, through a Linux device driver and direct 
user space communication, where the driver is used to establish communication 
domains and handle errors, but can be bypassed for data transfer. Parallel applications 
typically use a library such as Cray MPI or SHMEM in which the programmer makes 
explicit communication calls. 

Alternatively they may uses a programming model such as UPC, Chapel or Co-Array 
Fortran in which the compiler automatically generates the inter-process communication 
calls. Both approaches are layered over the user level Gemini Network Interface (uGNI) 
and/or the Distributed Memory APPlications (DMAPP) library (as shown in Figure 7) 
which perform the Cray network specific operations. Kernel modules such as the Lustre 
communicate via the kernel Gemini Network Interface (kGNI).
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Figure 7    Gemini Software Stack

Gemini is a connectionless design, rather than creating point to point connections 
between processes, a parallel application begins by establishing a communications 
domain. Connectionless designs are preferred in High Performance Computing as they 
scale well to large system sizes - in particular their memory usage remains constant as 
the size of the job increases. Each communication domain specifies a set of processes 
(or kernel threads) that are allowed to communicate. Creating a communications 
domain is a privileged operation that results in a protection tag being allocated. The 
hardware adds this tag to each packet ensuring isolation of communication domains 
between users. Each process is also allocated a virtual process id (or rank). The Gemini 
NIC performs virtual to physical translations, converting ranks to physical locations. 
Any attempt to communicate with a process outside of the communication domain 
generates an error. Program initialization follows a sequence of steps in which the 
placement scheduler (ALPS) first creates a communication domain and then starts the 
user processes. The processes sign on to the communication domain, create their 
completion queues and register memory with the communication domain. Having 
completed this sequence of steps, the processes in a parallel job can initiate either 
put/get or send/receive style communication. These operations are all asynchronous, 
with completion events being generated when an operation or sequence of operations 
has been completed. This approach promotes programming models in which 
communications is initiated early so as to hide latency. Gemini optimizes for this, 
supporting both large numbers of pending operations and high issue rates. 
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4.1    Programming Environment

Cray MPI uses the MPICH2 distribution from Argonne. The MPI device for Gemini is 
layered over uGNI (point-to-point) and DMAPP (collectives). Use of FMA gives MPI 
applications the ability to pipeline large numbers of small, low latency transfers; an 
increasingly important requirement for strong scaling on multi-core nodes. MPI 
message matching is progressed by each call or using a helper thread. The Gemini block 
transfer engine is used to provide high bandwidth and good overlap of computation and 
communication. Cray MPI uses dedicated mailboxes (for frequently used 
communication paths) combined with a per-node message queue ensuring that memory 
requirements are modest, even on the largest jobs. FMA and AMO transactions are 
combined to implement high performance collective operations. 

SHMEM provides an explicit one-sided communication model. Each process executes 
in its own address space but can access segments of the memory of other processes 
(typically the static data segment and symmetric heap) through a variety of put/get calls 
and collectives. Cray systems since the T3D have supported SHMEM. Its 
implementation for Gemini provides the application programmer with fine grain 
control of communication with a minimum of overhead. 

Gemini is designed to provide efficient support of emerging Partitioned Global Address 
Space (PGAS) programming models as well as MPI. Cray’s Chapel, UPC and Co-Array 
Fortran compilers use a common runtime implemented with DMAPP. The DMAPP 
library includes blocking, non-blocking and indexed variants of put and get together 
with scatter/gather operations and AMOs. This interface is also provided for third 
parties developing their own compilers, libraries and programming tools. Compiler 
generated communication typically results in large numbers of small irregular transfers. 
Gemini’s FMA mechanism minimizes the overhead of issuing them and its high packet 
rate maximizes performance.

5   Gemini Packaging

Cray systems are constructed from dual socket Opteron nodes. Four nodes are packaged 
on a blade card, eight blades in a chassis and three chassis in a cabinet, for a total of 96 
nodes (192 processor sockets) per cabinet. A network mezzanine card is fitted to each 
blade. This card contains a pair of Gemini ASICs connected such that each blade 
provides a 1×4×1 element of the overall 3D torus. The chassis backplane provides 
connections in the ‘z’ direction so that the eight cards in a chassis form a 1×4×8 element 
of the torus. 

The remainder of the links (88 per chassis) are taken to connectors on the rear of the 
chassis. A range of cabling options support different sizes of systems with cabinets 
layed out in a 2D grid as illustrated in Table 1, where N is the number of cabinets per 
row and R is the number of rows. Each row must have the same number of cabinets. 
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Table 1    Gemini Network Topologies

Restrictions on cable lengths make it impractical to close the torus by running cables 
from one end of a row or column to the other. Instead alternate cabinets are cabled 
together as illustrated in Figure 8 for a 32 cabinet system. Cables close the ‘x’ and ‘z’ 
dimensions. An even number of rows is strongly preferred. 

Jaguar, the largest system shipped to date, has 200 cabinets arranged in 8 rows of 25 
cabinets. The Gemini design, like that of SeaStar, its predecessor, allows large systems 
such as Jaguar to be constructed from a single scalable unit, one cabinet, using copper 
cables. No external routers are required

Figure 8    Inter-cabinet cabling for 32 cabinets in 4 rows

Class Cabinets Geometry Connectivity

0 1-3 3N×4×8 x between chassis
y within chassis
z within chassis

1 4-16 in one 
row

N×12×8 x between cabinets
y within cabinet
z within chassis

2 16-48 in two 
rows

N×12×16 x between cabinets in a row 
y within cabinet
z connects the rows

3 > 48 N×4R×24 x between cabinets in a row
y between rows
z within cabinet
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5.1    Gemini in ‘m’ series systems

Cray’s entry level ‘m’ series systems also use the Gemini interconnect. These systems 
comprise a single row of 1-6 cabinets connected in a 2D torus. Single cabinet systems 
use a 4×8, 8×8 or 12×8 torus. Multi-cabinet systems use a 4N×24 torus where N is the 
number of cabinets.

5.2    Upgrading SeaStar to Gemini

The Gemini mezzanine card is pin compatible with the SeaStar network card used on 
Cray XT5 and XT6 systems allowing them to be upgraded to Gemini. The upgrade is 
straightforward, each blade is removed and its network card is replaced. There are no 
changes to the chassis, cabinets or cabling. 

5.3    Cray Models

Cray uses XTn names to denote SeaStar models and XEn names to denote Gemini. 

Table 2    Cray Model names

6   Gemini Performance

6.1    Clock Speed

The Gemini NIC operates at 650 MHz, the router at 800MHz and the link SERDES at 
3.125GHz. The speed of the HyperTransport interface ranges from 1600MHz to 
2600Mhz depending on the node type. 

6.2    Latency & Bandwidth

End-to-end latency in a Gemini network is determined by the end point latencies and the 
number of hops. On a quiet network, the end-point latency is 1.0μs or less for a remote 
put, 1.5μs or less for a small MPI message. The per hop latency is 105ns on a quiet 
network.

Name Year Node  Gemini Name

Cray XT3 Single socket Opteron nodes

Cray XT4 Single socket Budapest nodes

Cray XT5 2008 Dual socket Barcelona/Shanghai/Istanbul XE5

Cray XT5m 2009 Dual socket Barcelona/Shanghai/Istanbul XE5m

Cray XT6 2010 Dual socket Magny Cours XE6

Cray XT6m 2010 Dual socket Magny Cours XE6m
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The Gemini NIC can transfer 64 bytes of data in each direction every 5 cycles. 
Maximum bandwidth per direction is 64 × 650 / 5 = 8.3 GB/s. Injection bandwidths 
depend on the speed of the HyperTransport interface and the method of transfer. The 
interface is 16 bits wide and transfers data on both edges of the clock, giving a raw 
bandwidth of 9.6 GB/sec in each direction at 2400 MHz. On FMA put the 
HyperTransport overheads are 12 bytes on up to 64 bytes of data, limiting the peak 
bandwidth to 8 GB/sec. For BTE transfers there is a 12-byte read request followed by 
a 76-byte posted write for every 64-byte data packet. For symmetric BTE traffic the 
peak bandwidth of the host interface is 7 GB/sec in each direction after protocol. The 
netlink block injects packets into the router, distributing traffic across the 8 processor 
tiles. Each 64-byte write is transferred as 32 × 24-bit request phits (7 header, 24 data and 
1 end of packet) with a 2-phit response (3 on error), with each processor tile transfering 
one 64-byte packet in each direction every 32 cycles. 

Each of the 10 Gemini torus links compises 12 channels in each direction operating at 
3.125GHz. Link bandwidths are 4.68GB/sec per direction. Efficiency on 64-byte 
transfers is 63%, significantly higher than competing products. Bandwidth after 
protocol is 2.9 GB/sec per link per direction. The torus network provides multiple links 
between nodes. Packets are adaptively distributed over all of the available links, 
enabling a single transfer (a point-to-point MPI message for example) to achieve 
bandwidths of 5GB/sec or more. Higher bandwidths can be achieved between processes 
on the same node or processes on nodes connected to the same Gemini. Where multiple 
user processes or kernel threads are sending data at the same time (the common case for 
multi-core nodes), the Gemini NIC can inject packets at host interface bandwidth, with 
the router spreading traffic out over all of the available links. Note that the bandwidth 
at which a node can send data to multiple destinations or receive data from multiple 
destinations exceeds the point-to-point bandwidth between any pair of nodes. The 
former is limited by injection bandwidth and the latter is limited by link bandwidth.

6.2.1    Bisection Bandwidth

To determine the bisection bandwidth of a Cray Gemini system, consider the 
dimensions of the torus X×Y×Z. Next determine whether the ‘y’ dimension of the torus 
is closed. The ‘x’ and ‘z’ dimension are closed in standard configurations. Now 
consider the three products

Lz = X×Y×2, Ly = X×Z×Cy, Lx= Y×Z×2

Where Cy is 1 if the ‘y’ dimension is open and 2 if it is closed. Select the smallest of the 
three products. This is the number of links crossing the worst case bisection. Gemini 
links are bidirectional; so to calculate the bisection bandwidth, multiply the worst case 
number of links by twice the link speed. 

bandwidth = 2 × links × 4.68 GB/s
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For example, in a 40 cabinet system arranged as 4 rows of 10 racks the torus is 
10×16×24

Lz = 10×16×2=320, Ly=10×24×2=480, Lx=16×24×2=768

The ‘z’ dimension has the fewest links and so the bisection bandwidth is

2×320×4.68 = 2995 GB/s

6.2.2    Global Bandwidth

Bisection bandwidth is frequently used to characterise the performance of a network, 
but it is rare that all processes in one half of the machine communicate simultaneously 
with all of the processes in the other half. A more common case is that half of the 
communication crosses the bisection and half remains local (see Figure 9), for example 
in a global exchange (or all-to-all) or purely random communication. 

Figure 9    Global communication pattern

The global bandwidth of a torus network is twice its bisection, 5990GB/s in the 40 
cabinet example above.
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