
0

Elemental: A New Framework for Distributed Memory
Dense Matrix Computations

JACK POULSON, BRYAN MARKER, and ROBERT A. VAN DE GEIJN,
The University of Texas at Austin
JEFF R. HAMMOND and NICHOLS A. ROMERO,
Argonne Leadership Computing Facility

Parallelizing dense matrix computations to distributed memory architectures is a well-studied subject and

generally considered to be among the best understood domains of parallel computing. Two packages, devel-

oped in the mid 1990s, still enjoy regular use: ScaLAPACK and PLAPACK. With the advent of many-core
architectures, which may very well take the shape of distributed memory architectures within a single pro-

cessor, these packages must be revisited since the traditional MPI-based approaches will likely need to be
extended. Thus, this is a good time to review lessons learned since the introduction of these two packages

and to propose a simple yet effective alternative. Preliminary performance results show the new solution

achieves competitive, if not superior, performance on large clusters.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Efficiency

General Terms: Algorithms, Performance

Additional Key Words and Phrases: linear algebra, libraries, high-performance, parallel computing

ACM Reference Format:
Poulson, J., Marker, B., Van de Geijn, R. A., Hammond, J. R., and Romero, N. A. 2011. Elemental: A New
Framework for Distributed Memory Dense Matrix Computations. ACM Trans. Math. Softw. 0, 0, Article 0 (
0000), 24 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
With the advent of widely used commercial distributed memory architectures in the
late 1980s and early 1990s came the need to provide libraries for commonly encoun-
tered computations. In response two packages, ScaLAPACK [Blackford et al. 1997;
Anderson et al. 1992; Dongarra and van de Geijn 1992; Anderson et al. 1992; Don-
garra et al. 1994] and PLAPACK [Wu et al. 1996; Alpatov et al. 1997; van de Geijn
1997], were created in the mid-1990s, both of which provide a substantial part of the
functionality offered by the widely used LAPACK library [Anderson et al. 1999]. Both
of these packages still enjoy loyal followings.

One of the authors of the present paper contributed to the early design of ScaLA-
PACK and was the primary architect of PLAPACK. This second package resulted
from a desire to introduce abstraction in order to overcome the hardware and soft-

Authors’ addresses: Jack Poulson, Institute for Computational Engineering and Sciences, The Uni-
versity of Texas at Austin, Austin, TX 78712, poulson@ices.utexas.edu. Robert A. van de Geijn
and Bryan Marker, Department of Computer Science, The University of Texas at Austin, Austin,
TX 78712, rvdg@cs.utexas.edu, bamarker@gmail.com. Nichols A. Romero and Jeff R. Hammond, Ar-
gonne National Laboratory, 9700 South Cass Avenue, LCF/Building 240, Argonne, IL 60439, {naromero,
jhammond}@anl.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 0000 ACM 0098-3500/0000/-ART0 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:2 Jack Poulson et al.

Algorithm: A := CHOL BLK(A) Variant 3: down-looking

Partition A→
(
ATL ATR

? ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do
b = min(m(ABR), balg)
Repartition(

ATL ATR

? ABR

)
→

 A00 A01 A02

? A11 A12

? ? A22

whereA11 is b× b

A11 := CHOL(A11)

A12 := A−H
11 A12 (TRSM)

A22 := A22 −AH
12A12 (HERK)

Continue with
(
ATL ATR

? ABR

)
←

 A00 A01 A02

? A11 A12

? ? A22


endwhile

Fig. 1. Blocked algorithms for computing the Cholesky factorization.

ware complexity that faced computational scientists in the early days of massively
parallel computing much like what the community now faces as multicore architec-
tures evolve into many-core architectures and distributed memory architectures be-
come heterogeneous architectures. After major development on the PLAPACK project
ceased around 2000, many of the insights were brought back into the world of se-
quential and multi-threaded architectures (including SMP and multicore), yielding
the FLAME project [Gunnels et al. 2001], libflame library [Van Zee 2009], and Su-
perMatrix runtime system for scheduling dense linear algebra algorithms to multicore
architectures [Chan et al. 2007b; Quintana-Ortı́ et al. 2009]. With the advent of many-
core architectures that may soon resemble “distributed memory clusters on a chip”,
like the Intel 80-core network-on-a-chip terascale research processor [Mattson et al.
2008] and the recently announced Intel Single-chip Cloud Computer (SCC) research
processor with 48 cores in one processor [Howard et al. 2010], the research comes full
circle: distributed memory libraries may need to be (and have been) mapped to single-
chip environments [Marker et al. 2011a].

This seems an appropriate time to ask what we would do differently if we had to
start all over again building a distributed memory dense linear algebra library. In this
paper, we attempt to answer this question by describing a new effort, the Elemental
library. This time the solution must truly solve the programmability problem for this
domain. It cannot compromise (much) on performance. It must be easy to retarget from
a conventional cluster to a cluster with hardware accelerators to a distributed memory
cluster on a chip.

Both the ScaLAPACK and PLAPACK projects generated dozens of papers. Thus,
this paper is merely the first in what we expect to be a series of papers that together
provide the new design. As such it is heavy on vision and somewhat light on details.

2. MATRIX DISTRIBUTIONS AND COLLECTIVE COMMUNICATION
A key insight that underlies scalable dense linear algebra libraries for distributed
memory architectures is that the matrix must be distributed to MPI processes (pro-
cesses hereafter) using a two-dimensional data distribution [Schreiber 1992; Stewart
1990; Hendrickson and Womble 1994]. The p processes in a distributed memory archi-
tecture are logically viewed as a two-dimensional r × c process grid with p = r × c.
Subsequently, communication when implementing dense matrix computations can be

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:3

cast (almost) entirely in terms of collective communication within rows and columns
of processes, with an occasional collective communication that involves all processes.

In this section, we discuss redistributions and the collective communications that
support them. Readers that are unfamiliar with collective communication algorithms
and their costs may wish to consult [Chan et al. 2007a] to gain a basic understanding.

2.1. Motivating example
In much of this paper, we will use the Cholesky factorization as our motivating exam-
ple. An algorithm for this operation, known as the down-looking variant, that lends
itself well to parallelization is expressed using FLAME notation [Gunnels et al. 2001]
in Figure 1.

2.2. Two-dimensional (block) cyclic distribution
In order to understand how dense linear algebra algorithms are parallelized on dis-
tributed memory architectures, it is crucial to understand how data is typically dis-
tributed among processes. To this end, we briefly introduce two-dimensional (block)
cyclic matrix distributions.

The first step in defining a two-dimensional cyclic distribution is to take a matrix
A ∈ Tm×n, where T is an arbitrary datatype, and to partition A into blocks,

A =

 A0,0 · · · A0,N−1

...
...

AM−1,0 · · · AM−1,N−1

 ,

where the size of each Ai,j is determined by the user-chosen “distribution block size”,
say mb × nb, with the possible exception of the blocks on the boundaries of A being
smaller. A two-dimensional (Cartesian) block-cyclic matrix distribution over an r × c
logical process grid assigns each As,t to process ((s+σi) mod r, (t+σj) mod c), where σi
and σj are arbitrary alignment parameters. In particular, the usual scheme is for each
process to store all of the blocks assigned to it in a contiguous matrix; for example, the
local matrix of process (s, t) would be

A =

 Aγ,δ Aγ,δ+c · · ·
Aγ+r,δ Aγ+r,δ+c · · ·

...
...

 ,

where γ ≡ (s− σi) mod r is the first block row assigned to the s’th row of the r× c grid,
and likewise δ ≡ (t− σj) mod c is the first block column assigned to the t’th column of
the grid. For the particular case where mb = nb = 1, the discussed scheme is referred
to as an “elemental” or “torus-wrap” matrix distribution [Johnsson 1987; Hendrickson
and Womble 1994].

2.3. ScaLAPACK
ScaLAPACK [Blackford et al. 1997; Anderson et al. 1992; Dongarra and van de Geijn
1992; Anderson et al. 1992; Dongarra et al. 1994] was designed to extend the most
commonly used LAPACK routines onto distributed-memory computers using two-
dimensional block cyclic decompositions. In particular, the approach taken by the vast
majority of ScaLAPACK routines is to mirror the LAPACK approach of layering on top
of the Basic Linear Algebra Subprograms (BLAS) by instead building upon a parallel
versions of the BLAS1 namely, the PBLAS.

1The optimized routines for reduction to tridiagonal form, e.g., pdsyttrd, are notable exceptions.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:4 Jack Poulson et al.

While in theory ScaLAPACK allows blocks Ai,j to be rectangular and arbitrarily
aligned, routines that exploit symmetry, e.g., Cholesky factorization via pdpotrf, re-
quire both mb = nb and σi = σj . In addition, the design decisions that underly ScaLA-
PACK link the distribution block sizes to the algorithmic block size (e.g., the size of
block A11 in Figure 1). Predicting the best distribution block size is often difficult be-
cause there is a tension between having block sizes that are large enough for local
Basic Linear Algebra Subprogram (BLAS) [Dongarra et al. 1990] efficiency, yet small
enough to avoid inefficiency due to load-imbalance.

One benefit of linking algorithmic and distribution block sizes is that factorizations
of small submatrices can usually be performed locally on a single process without any
communication. For example, the A11 block in Figure 1 is owned by a single process
that can locally compute its Cholesky factor. After factorization, the block only needs
to be broadcast within the row of processes that owns A12, and then those processes
can independently perform their part of A12 := A−H

11 A12 with local calls to a triangular
solve with multiple right-hand sides routine (trsm) (thus only c processes participate
in this operation). Finally, A12 is redistributed in two different manners such that each
process may locally perform its portion of the A22 := A22 −AH12A12 update.

In the case of LU factorization, linking the distribution and algorithmic block sizes
has the added benefit of allowing for the formation of a pipeline within rows of the
process grid that can drastically lower the effective communication latency of the fac-
torization [Dongarra and Ostrouchov 1990; Anderson et al. 1992]. This communication
pipeline is a fundamental part of the High Performance Linpack (HPL) benchmark [Pe-
titet et al.], but a much shallower pipeline can be created within ScaLAPACK’s LU
factorization routine [Choi et al. 1994; van de Geijn 1992].

On the other hand, [Sears et al. 1998] extended the work of [Hendrickson et al. 1999]
by creating a blocked Householder tridiagonalization routine that exploits an elemen-
tal distribution to construct a pipeline within rows of the process grid. This approach
provides a large enough speedup over alternative parallelizations that ScaLAPACK
has incorporated it via the routines p[s,d]syntrd and p[c,z]hentrd, which handle re-
distribution into an elemental distribution, performing the fast tridiagonalization, and
then redistributing back to a blocked distribution. It is telling that ScaLAPACK has
incorporated an elemental tridiagonalization routine: it shows that elemental distri-
butions are not just a simplification of blocked distributions; for some operations they
can provide substantial performance improvements.

2.4. PLAPACK
Contrary to the approach of ScaLAPACK, in PLAPACK the distribution block size is
not tied to the algorithmic block size, and it is thus possible to keep the distribution
block size small for good load balancing and to separately tune the algorithmic block
size to improve the efficiency of local computation.

PLAPACK defines matrix distributions in a manner that is meant to ensure fast re-
distributions to and from vector distributions [Edwards et al. 1995; van de Geijn 1997],
which are defined by subdividing either the rows or columns of a matrix into subvectors
of length mb and assigning them in a cyclic fashion to all processes. The related “in-
duced” matrix distribution in PLAPACK is, for an r × c grid, a two-dimensional block-
cyclic decomposition where nb = rmb. One advantage of this distribution strategy is
that the diagonal of any sufficiently large matrix will be evenly distributed amongst
all processes. This observation allows for a large conceptual simplification of redistri-
butions that require transposition: each row of the matrix simply needs to be gathered
within a row of the process grid to the process owning the diagonal entry, and then
scattered within the diagonal process’s column of the process grid.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:5

Due to PLAPACK’s self-imposed constraint that nb = rmb, it is mildly nonscalable in
the sense that, as the number of processes p increases, the widths of distributed matri-
ces must grow proportionally to r ≈ √p in order to keep their rows evenly distributed.
This mild nonscalability was the result of a conscious choice made to simplify the
implementation at a time when the number of processes was relatively small. While
lifting the restriction on the aspect ratio of the mb × nb distribution blocks is a matter
of “inducing” the matrix distribution from two vector distributions (that need only be
different by a simple permutation) instead of just one, this generalization was instead
implemented within the new package described in this paper, Elemental.

2.5. Elemental
Elemental is a framework for distributed memory dense linear algebra that is designed
to be a modern extension of the communication insights of PLAPACK to elemental
distributions. While ScaLAPACK linked algorithmic and distribution block sizes, and
PLAPACK introduced a mild inscalability through the use of only a single vector dis-
tribution, Elemental’s simplification is to fix the distribution block sizes at one. This
approach is not new and is best justified in [Hendrickson et al. 1999]:

“In principle, the concepts of storage blocking and algorithmic blocking are completely inde-
pendent. But as a practical matter, a code that completely decoupled them would be painfully
complex. Our code and ScaLAPACK avoid this complexity in different ways. Both codes allow
any algorithmic blocking, but ScaLAPACK requires that the storage blocking factor be equal to
[the] algorithmic blocking factor. We instead restrict storage blocking to be equal to 1.”

There are a number of reasons to argue the restriction to mb = nb = 1, such as the
obvious benefit to load balancing, but perhaps the most convincing is that it elimi-
nates alignment problems that frequently appear when operating on submatrices. For
example, if one desires to compute the Schur complement of the bottom right quad-
rant of a symmetric matrix, the symmetric update is greatly complicated when mb is
not an integer multiple of the height of the top-left matrix and/or nb is not a multiple
of the width. In particular, unaligned symmetric factorizations are not supported in
ScaLAPACK. Since every integer is clearly an integer multiple of one, elemental dis-
tributions eliminate these burdensome alignment issues and allow for straightforward
manipulation of arbitrary contiguous submatrices.

On early distributed memory architectures, before the advent of cache-based proces-
sors that favor blocked algorithms, elemental distributions were the norm [Johnsson
1987; Hendrickson and Womble 1994]. We again quote [Hendrickson et al. 1999],
where it is noted that

“Block storage is not necessary for block algorithms and level 3 [BLAS] performance. Indeed,
the use of block storage leads to a significant load imbalance when the block size is large. This
is not a concern on the Paragon, but may be problematic for machines requiring larger block
sizes for optimal BLAS performance.”

Similarly, in [Strazdins 1998], the performance benefits from choosing separate algo-
rithmic and (small) distribution block sizes were shown. These insights are more rele-
vant now than before: The algorithmic block size used to be related to the square root
of the size of the L1 cache [Whaley and Dongarra 1998], which was relatively small.
Kazushige Goto [Goto and van de Geijn 2008] showed that higher performing imple-
mentations should use the L2 cache for blocking, which means that the algorithmic
block size is now typically related to the square root of the size of the much larger L2
cache. Linking the distribution and algorithmic block sizes will thus create a tension
between load balancing and filling the L2 cache.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:6 Jack Poulson et al.

2.6. Discussion
To some the choice of mb = nb = 1 may seem to contradict the conventional wisdom
that the more process boundaries are encountered in the data partitioning for distribu-
tion, the more often communication must occur. To explain why this is not necessarily
true for dense matrix computations, consider the following observations regarding the
parallelization of a blocked down-looking Cholesky factorization (with n ≥ p in order
to simplify discussion): In the ScaLAPACK implementation, A11 is factored by a single
process after which it must be broadcast within the column of processes that owns it.
If the matrix is distributed using mb = nb = 1, then A11 can be (all)gathered to all pro-
cesses and factored redundantly (see Appendix A.3). We note that, if communication
cost is ignored, this is as efficient as having a single process compute the factorization
while the other cores idle. If implemented optimally, and b & √p (where A11 is a b × b
matrix), an allgather to all processes is comparable in cost [Chan et al. 2007a] to the
broadcast of A11 performed by ScaLAPACK: If the process grid is p = r × c, under rea-
sonable assumptions, the former requires log2(p) relatively short messages while the
latter requires log2(r) ≈ log2(p)/2 such messages.

Next, consider the update ofA12: In the ScaLAPACK implementation,A12 is updated
by the c processes in the process row that owns it, requiring the broadcast of A11 within
that row of processes. Upon completion, the updated A12 is then broadcast within rows
and columns of processes. If the matrix is distributed using mb = nb = 1, then columns
of A12 must be brought together so that they can be updated as part of A12 := A−H

11 A12.
This can be implemented as an all-to-all collective communication within columns (de-
tails of which are illustrated in Appendix A.4), whose cost is ignorable since its com-
munication volume is roughly 1/

√
p of that of later broadcasts/allgathers. Since A11

was redundantly factored by each process, the update A12 := A−H
11 A12 is shared among

all p processes (again, details are illustrated in Appendix A.4). Notice that the ScaLA-
PACK algorithm would only involve c ≈ √p processes in the triangle solves, whereas
the Elemental approach involves all p processes. On the other hand, triangle solves
only constitute O(n2) of the O(n3) flops required for the factorization, so the penalty
for the ScaLAPACK approach is mild for large n.

Finally, consider the update of A22: An allgather within rows and columns then du-
plicates the elements of A12 (also illustrated in Appendix A.5) so that A22 can be up-
dated in parallel; the ScaLAPACK approach is similar but uses a broadcast rather
than an allgather.

In summary, for Cholesky factorization, an elemental distribution requires different
communications that are comparable in cost to those incurred when using block-cyclic
distributions, but with the benefit of enhancing load balance for operations like A12 :=
A−H

11 A12 and A22 := A22 −AH12A12.
Perhaps more interestingly, the case for using elemental distributions in the context

of Householder tridiagonalization has already been made for us: as previously dis-
cussed, ScaLAPACK has already incorporated some of the contributions from [Sears
et al. 1998], of which the Householder tridiagonalization routines exploit an elemental
distribution over a square subgrid in order to achieve much higher performance than
has been demonstrated in blocked distributions. While Sears et al. limited themselves
to square grids, we demonstrate that the same techniques easily extend to nonsquare
grids, thereby eliminating the need for the extra memory needed for the redistribu-
tion, although with less of a performance improvement than when redistributing to
and from a square process grid.

3. REPRESENTING PARALLEL ALGORITHMS IN CODE
We now briefly discuss how the different libraries represent algorithms in code.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:7

3.1. ScaLAPACK
The fundamental design decision behind ScaLAPACK can be found on the ScaLAPACK
webpage [ScaLAPACK 2010]:

“Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order
to minimize the frequency of data movement between different levels of the memory hierarchy.
(For such machines, the memory hierarchy includes the off-processor memory of other proces-
sors, in addition to the hierarchy of registers, cache, and local memory on each processor.) The
fundamental building blocks of the ScaLAPACK library are distributed memory versions of the
Level 1, 2 and 3 Basic Linear Algebra Subprograms (BLAS) called the Parallel BLAS (PBLAS),
and a set of Basic Linear Algebra Communication Subprograms (BLACS) for communication
tasks that arise frequently in parallel linear algebra computations. In the ScaLAPACK rou-
tines, all interprocessor communication occurs within the PBLAS and the BLACS. One of the
design goals of ScaLAPACK was to have the ScaLAPACK routines resemble their LAPACK
equivalents as much as possible.”

In Figure 2 we show the ScaLAPACK Cholesky factorization routine. A reader who is
familiar with the LAPACK Cholesky factorization will notice the similarity of coding
style.

3.2. PLAPACK
As mentioned, PLAPACK already supports independent algorithmic and distribution
block sizes. While mb = 1 is supported, the current implementation would require
that nb = rmb = r, so many of the benefits of an elemental distribution would not be
available without rewriting much of the library.

Since the inception of PLAPACK, additional insights into dense matrix library devel-
opment were exposed as part of the FLAME project and incorporated into the libflame
library. To also incorporate all those insights, a complete rewrite of PLAPACK made
more sense, yielding Elemental. For this reason we do not show code samples from
PLAPACK.

3.3. Elemental
Elemental is written in the formal style of the libflame library but also incorporates a
new notation and API for handling distributed matrices. In addition, Elemental takes
advantage of C++ through its use of generic programming, const-correctness, and tem-
plated datatypes.2 Like its predecessors, PLAPACK and libflame, Elemental attempts
to provide a simple user interface by hiding details about matrices and vectors, such
as leading dimensions and datatype, within objects rather than individually passing
attributes in the style of (Sca)LAPACK. As a result, the vast majority of indexing de-
tails that exist in (Sca)LAPACK code disappear, leading to (in our experience) much
simpler interfaces and faster development.

Let us examine how the code in Figure 3 implements the algorithm described in
Section 2.5. The command

PartitionDownDiagonal(A, ATL, ATR,
ABL, ABR, 0);

sets ABR = A and ATL as a 0 × 0 placeholder matrix; for this algorithm, ATL can be
thought of as the portion of the matrix that we have completely factored, while the
remaining three quadrants represent pieces of A that still require updates. We then
run a while loop which continues until the entire matrix has been factored, i.e., when

2While Elemental currently provides distributed BLAS and LAPACK type routines for the float, double,
std::complex<float>, and std::complex<double> datatypes, arbitrary real or complex field will be sup-
ported as soon as MPI and local BLAS interfaces are made available for them.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:8 Jack Poulson et al.

SUBROUTINE PZPOTRF(UPLO, N, A, IA, JA, DESCA, INFO)
*
* < deleted code >
*

DO 10 J = JN+1, JA+N-1, DESCA(NB_)
JB = MIN(N-J+JA, DESCA(NB_))
I = IA + J - JA

*
* Perform unblocked Cholesky factorization on JB block
*

CALL PZPOTF2(UPLO, JB, A, I, J, DESCA, INFO)
IF(INFO.NE.0) THEN

INFO = INFO + J - JA
GO TO 30

END IF
*

IF(J-JA+JB+1.LE.N) THEN
*
* Form the row panel of U using the triangular solver
*

CALL PZTRSM(’Left’, UPLO, ’Conjugate transpose’,
$ ’Non-Unit’, JB, N-J-JB+JA, CONE, A, I, J,
$ DESCA, A, I, J+JB, DESCA)

*
* Update the trailing matrix, A = A - U’*U
*

CALL PZHERK(UPLO, ’Conjugate transpose’, N-J-JB+JA, JB,
$ -ONE, A, I, J+JB, DESCA, ONE, A, I+JB,
$ J+JB, DESCA)

END IF
10 CONTINUE

* < deleted code >

Fig. 2. Excerpt from ScaLAPACK 2.0.0 Cholesky factorization. Parallelism is hidden inside calls to parallel
implementations of BLAS operations, which limits the possibility of reusing communication steps between
several such operations.

ABR is empty. Within the while loop, progress through the matrix is controlled by two
commands: The first of which is

RepartitionDownDiagonal(ATL, /**/ ATR, A00, /**/ A01, A02,
/*************/ /******************/

/**/ A10, /**/ A11, A12,
ABL, /**/ ABR, A20, /**/ A21, A22);

which refines the four quadrants into nine submatrices, of which A11 is a square diago-
nal block whose dimension is equal to the algorithmic block size. The second command
is

SlidePartitionDownDiagonal(ATL, /**/ ATR, A00, A01, /**/ A02,
/**/ A10, A11, /**/ A12,

/*************/ /******************/
ABL, /**/ ABR, A20, A21, /**/ A22);

which redefines the four quadrants such that ATL, the completely factored portion of
A, has been augmented by the A01, A10, and A11 submatrices.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:9

template<typename F> // F is any representation of a real or complex field
void CholUVar3(DistMatrix<F,MC,MR>& A)
{

const Grid& g = A.Grid();
DistMatrix<F,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g),

ABL(g), ABR(g), A10(g), A11(g), A12(g),
A20(g), A21(g), A22(g);

DistMatrix<F,STAR,STAR> A11_STAR_STAR(g);
DistMatrix<F,STAR,VR > A12_STAR_VR(g);
DistMatrix<F,STAR,MC > A12_STAR_MC(g);
DistMatrix<F,STAR,MR > A12_STAR_MR(g);

PartitionDownDiagonal(A, ATL, ATR,
ABL, ABR, 0);

while(ABR.Height() > 0)
{

RepartitionDownDiagonal(ATL, /**/ ATR, A00, /**/ A01, A02,
/*************/ /******************/

/**/ A10, /**/ A11, A12,
ABL, /**/ ABR, A20, /**/ A21, A22);

A12_STAR_MC.AlignWith(A22);
A12_STAR_MR.AlignWith(A22);
A12_STAR_VR.AlignWith(A22);
//---//
A11_STAR_STAR = A11;
internal::LocalChol(UPPER, A11_STAR_STAR);
A11 = A11_STAR_STAR;

A12_STAR_VR = A12;
internal::LocalTrsm
(LEFT, UPPER, ADJOINT, NON_UNIT, (F)1, A11_STAR_STAR, A12_STAR_VR);

A12_STAR_MC = A12_STAR_VR;
A12_STAR_MR = A12_STAR_VR;
A12 = A12_STAR_MR;
internal::LocalTrrk
(UPPER, ADJOINT, (F)-1, A12_STAR_MC, A12_STAR_MR, (F)1, A22);
//---//
A12_STAR_MC.FreeAlignments();
A12_STAR_MR.FreeAlignments();
A12_STAR_VR.FreeAlignments();

SlidePartitionDownDiagonal(ATL, /**/ ATR, A00, A01, /**/ A02,
/**/ A10, A11, /**/ A12,

/*************/ /******************/
ABL, /**/ ABR, A20, A21, /**/ A22);

}
}

Fig. 3. Elemental upper-triangular Variant 3 Cholesky factorization. Unlike the ScaLAPACK code, this one
code can accomodate any datatype that represents a real or complex field.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:10 Jack Poulson et al.

All communication and floating point computation occurs between the two horizon-
tal lines of hyphens. Within this section, submatrices of A are redistributed, locally
updated, and then redistributed back to their original form. For instance, redistribut-
ing A11 so that all processes have a copy is achieved by first creating the container

DistMatrix<F,STAR,STAR> A11_STAR_STAR(g);

which indicates that A11_STAR_STAR is to be used for holding matrices which are repli-
cated on all processes. The lines

A11_STAR_STAR = A11;
internal::LocalChol(UPPER, A11_STAR_STAR);
A11 = A11_STAR_STAR;

then redistribute A11 by performing an allgather of the data, redundantly factor each
local copy of A11, and then locally (without communication) substitute the new values
back into the distributed matrix.

The parallel computation of A12 := A−H
11 A12 is accomplished by constructing a con-

tainer for A12,
DistMatrix<F,STAR,VR> A12_STAR_VR(g);

which describes what in PLAPACK would have been called a multivector distribution,
followed by

A12_STAR_VR = A12;
internal::LocalTrsm
(LEFT, UPPER, ADJOINT, NON_UNIT, (F)1, A11_STAR_STAR, A12_STAR_VR);

which redistributes the data via an all-to-all communication within columns and per-
forms the local portion of the update A12 := A−H

11 A12 (TRSM). The subsequent redistri-
butions ofA12, so thatA22 := A22−AH12A12 can be performed through local computation,
are accomplished by first constructing two temporary distributions,

DistMatrix<F,STAR,MC> A12_STAR_MC(g);
DistMatrix<F,STAR,MR> A12_STAR_MR(g);

and then the redistributions themselves are accomplished by the commands
A12_STAR_MC = A12_STAR_VR;
A12_STAR_MR = A12_STAR_VR;

The first command performs a permutation of data among all processes followed by
an allgather of data within rows, and the second performs an allgather of data within
columns. The local updates of A22 are then accomplished by

internal::LocalTrrk
(UPPER, ADJOINT, (F)-1, A12_STAR_MC, A12_STAR_MR, (F)1, A22);

Finally, the modified A12 resulting from the LocalTrsm is redistributed into its original
form (without communication) by the command

A12 = A12_STAR_MR;

This example shows that the Elemental framework allows the partitioning, distri-
butions, communications, and local computations to be elegantly captured in code.
The distributions and data movements that are incurred are further illustrated in
Appendix A.

4. PERFORMANCE EXPERIMENTS
The scientific computing community has always been willing to accept complexity if it
means attaining better performance. In this section, we give preliminary performance

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:11

numbers that suggest that a focus on abstraction and elegance does not need to come
at the cost of performance.

4.1. Platform details
The performance experiments were carried out on Argonne National Laboratory’s IBM
Blue Gene/P architecture. Each compute node consists of four 850 MHz PowerPC 450
processors for a combined theoretical peak performance of 13.6 GFlops in double-
precision arithmetic per node. Nodes are interconnected by a three-dimensional torus
topology and a collective network that each support a per node bidirectional bandwidth
of 2.25 GB/s. Our experiments were performed on two racks (2048 compute nodes, or
8192 cores), which have an aggregate theoretical peak of 27.85 TFlops. For this con-
figuration the X, Y , and Z dimensions of the torus are 8, 8, and 32, respectively, while
the intranode dimension, T , is 4. For the majority of our experiments, the optimal de-
composition into a two-dimensional topology was found to be either (X,Y) × (Z, T)
or (Z, T) × (X,Y), with the former case meaning that the process grid is constructed
with its first dimension containing both the X and Y dimensions of the torus, and its
second dimension containing both the Z and T dimensions. Avoiding irregular commu-
nicators, i.e., those that only partially span one or more torus dimensions, is crucial in
achieving high bandwidths in collective communication routines on Blue Gene/P. The
(X,Y) × (Z, T) decomposition leads to a 64 × 128 process grid, while (Z, T) × (X,Y)
clearly yields the reverse.

We compare the performance of a preliminary version of Elemental with the latest
release of ScaLAPACK available from netlib (Release 1.8). Both packages were ex-
tensively tested for block sizes between 24, 32, ..., 256 and for various process grid sizes
and mappings to Blue Gene/P’s torus. For each problem size, only the result from the
best-performing block size and process grid combination is reported in the performance
graphs.

4.2. Operations
Solution of the Hermitian-definite generalized eigenvalue problem, given by Ax = λBx
where A and B are known, A is Hermitian, and B is Hermitian positive-definite, is of
importance to a wide class of fields, including quantum chemistry [Ford and Hall 1974]
and structural dynamics [Bennighof and Lehoucq 2003]. When A and B are dense, the
Cholesky-Wilkinson algorithm performs the following six steps [Wilkinson 1965; Golub
and Van Loan 1989]:

— Cholesky factorization.
B → LLH where L is lower triangular.

— Reduction to Hermitian standard form.
Form C := L−1AL−H , since Cz = λz holds if and only if Ax = λ(LLH)x, where
z ≡ LHx.

— Householder reduction to tridiagonal form.
Compute a unitary Q (as a sequence of Householder transformations) and a real
tridiagonal T such that T = QCQH .

— Spectral decomposition of a tridiagonal matrix.
Compute a unitary V and a real diagonal matrix D (or subsets thereof) such
that T = V DV H . The most common approaches are based upon: the MRRR algo-
rithm [Dhillon 1997], Cuppen’s divide-and-conquer [Cuppen 1981], and the shifted
QR algorithm [Stewart 1970].

— Back transformation.
Compute Z := QHV by applying the Householder transformations that represent Q.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:12 Jack Poulson et al.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

Dimension (in thousands)

T
F

lo
ps

Elemental
pdpotrf

Fig. 4. Real double-precision Cholesky factorization on 8192 cores of Blue Gene/P. The top of the graph is
set to one third of theoretical peak performance, 9.284 TFlops.

— Solution of a triangular system with multiple right-hand sides.
Form the eigenvectors of A by solving Z = LHX for X.

Since the performance of the symmetric tridiagonal eigensolution is, in contrast with
the other five steps, both problem and accuracy dependent, we have not included re-
sults from the extensive experiments that would be required for an honest compari-
son. However, we note that Elemental incorporates a scalable parallel implementation
of the MRRR algorithm [Bientinesi et al. 2005a] that was implemented by Matthias
Petschow and Paolo Bientinesi.

4.3. Results
Algorithms for complex matrices typically require four times as many floating point op-
erations as their real equivalent, yet only require twice as much storage. Thus, trans-
lating a matrix algorithm from real into complex arithmetic almost universally implies
an increase in the rate of floating point operations per second (flops). We thus restrict
our performance experiments to the more challenging (from an efficiency standpoint)
real symmetric-definite generalized eigenvalue problem.

Figure 4: Cholesky factorization. The performance in teraflops (TFlops) for both
Elemental and ScaLAPACK’s real Cholesky factorization routines are shown for prob-
lem sizes up to n = 80, 000, which, in double precision, only requires roughly 6.25 MB of
per process storage for the full matrix. This range of matrix sizes was chosen because
applications that make use of dense eigensolvers often target problem sizes that are
in the vicinity of n = 30, 000, and extremely large problem sizes are ill-suited for dense
linear algebra due to its characteristic O(n3) computational complexity.

The best performing parameters for ScaLAPACK’s pdpotrf were found to be one
of two cases: for all but the n = 80, 000 problem size, an (Z, T) × (X,Y) process grid
configuration was the fastest, yet for n = 80, 000 an (X,Y) × (Z, T) mapping of the
torus to the process grid led to nearly two teraflops of performance improvement. For

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:13

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

Dimension (in thousands)

T
F

lo
ps

Elemental
pdsyngst
pdsygst

Fig. 5. Real double-precision reduction of generalized-definite eigenvalue problem AX = BXΛ to symmet-
ric standard form on 8192 cores. The top of the graph is set to 40% of theoretical peak performance, 11.14
TFlops.

Elemental, the best mapping of the process grid onto the torus was found to be (Z, T)×
(X,Y) in all cases3.

That Elemental achieved modest performance improvements over ScaLAPACK’s
pdpotrf agrees with our analysis that the communication costs between the two dif-
ferent approaches are approximately equal, but, on the other hand, ScaLAPACK has
(perhaps suboptimal) hardcoded logical block sizes for the Hermitian rank-k update of
A22 that dominates the computational cost of right-looking Cholesky factorization.

Figure 5: Reduction to Hermitian standard form. ScaLAPACK includes two
implementations of this operation:

— pdsygst, which is a parallelization of the algorithm used by LAPACK’s dsygst. This
algorithm casts more computation in terms of dtrsm (triangular solve with multi-
ple right-hand sides, but with only a few right-hand sides), which greatly limits the
opportunity for parallelism.

— pdsyngst, which is based on an algorithm described in [Sears et al. 1998]. It casts
most computation in terms of rank-k updates, which are easily parallelizable4.

For the Elemental implementation, we independently derived an algorithm that is
similar to the one used in pdsyngst, as described in our paper [Poulson et al. 2011].

3Since Cholesky factorization requires a relatively small amount of work for a dense linear algebra rou-
tine, its performance is particularly sensitive to the achieved communication speeds, hence the discussed
teraflops of difference in performance due to different process grid choices. Indeed, experiments with El-
emental revealed a bug in the Blue Gene/P-specific modifications of MPICH2’s MPI Allgather that, when
corrected, led to twenty-times faster allgathers within rows of the process grid and increased performance
by several teraflops. The logic for routing between different allgather algorithms implicitly assumed that
each entry of data required one byte of storage. Fixing this mistake only requires trivial modifications to the
source code. Alternatively, one can implicitly cast all data to a byte-sized datatype, e.g., MPI CHAR.
4We note that pdsyngst only supports lower-triangular matrices.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:14 Jack Poulson et al.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

Dimension (in thousands)

T
F

lo
ps

Elemental (square grid)
pdsyntrd (square grid)
Elemental (rectangular grid)
pdsytrd (rectangular grid)

Fig. 6. Real double-precision Householder tridiagonalization on two racks of Blue Gene/P. The top of the
graph is set to 10% of theoretical peak performance, 2.785 TFlops.

The performance results clearly demonstrate the effects of the mentioned scalability
problem in pdsygst, which is shown to be an order of magnitude slower than the other
two approaches.

Although the routine pdsyngst performs essentially the same sequence of updates
as the Elemental implementation, it contains redundant communications since layer-
ing on top of the PBLAS does not allow for the reuse of temporary matrix distribu-
tions. Unlike Cholesky factorization, there are numerous updates to perform for each
iteration of the algorithm and thus the cost of the redundant communication is more
pronounced.

Figure 6: Householder reduction to tridiagonal form. As with the previous
operation, ScaLAPACK includes two different implementations for the reduction to
tridiagonal form:

— pdsytrd is a straightforward parallelization of the corresponding LAPACK algorithm,
dsytrd, which accumulates and applies many Householder updates at a time in order
to cast roughly half of the total work into matrix-matrix multiplication.

— pdsyntrd is based on the work discussed in [Sears et al. 1998; Hendrickson et al.
1999] and is a parallelization of a slightly different algorithm than that of dsytrd; in
both algorithms the Householder updates are accumulated during the tridiagonal-
ization of a column panel, but as dsytrd traverses through the columns of the panel,
it adopts a lazy approach to updating the panel while pdsyntrd parallelizes a greedy
algorithm for updating the panel. More importanty, rather than using a block cyclic
matrix distribution, it exploits an elemental distribution in order to set up a com-
munication pipeline within rows of the process grid. In addition, pdsyntrd requires a
square process grid since it allows for faster data transposition and symmetric matrix
vector multiplies.
Since ScaLAPACK uses block cyclic matrix distributions for every other routine,
pdsyntrd redistributes the matrix from a rectangular process grid into an elemen-

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:15

tal distribution over a square process grid that is as large as possible, performs the
fast tridiagonalization, and then redistributes back to the original block cyclic matrix
distribution5.

Elemental also contains two different approaches for the reduction to tridiagonal
form, one is a direct analogue to the algorithm discussed in [Sears et al. 1998], and
the other is a generalization to rectangular process grids so that the redistribution
to a square process grid can be avoided. The penalty is that matrix distributions can
no longer be transposed via a simple pairwise exchange and the local computation for
the distributed symmetric matrix vector multiplies is slightly less efficient, but many
communications can still be combined in the same manner as described in Sears et al.

The performance results demonstrate that the Elemental and ScaLAPACK imple-
mentations of the square process grid algorithm (which both use elemental distribu-
tions) achieve nearly identical performance; this is not surprising considering that
the two algorithms are essentially identical. More interestingly, Elemental’s general-
ization of this specialized approach to rectangular process grids is shown to achieve
substantial speedups over the straightforward parallelization of LAPACK’s dsytrd,
pdsytrd. We note that both Elemental and ScaLAPACK’s redistributions to a square
process grid currently use roughly twice the required amount of memory since they es-
sentially make a copy of the input matrix, though it would be possible to do an in-place
redistribution of the input matrix if the associated buffers were guaranteed to be large
enough to store either matrix distribution. It is thus currently preferable to use the
rectangular grid algorithms when memory usage must be kept at a minimum.

The setup necessary for maximizing the tridiagonalization performance is quite dif-
ferent from that of the other operations in that it does not involve evenly dividing the
torus dimensions between the row and column communicators: all four of the ScaLA-
PACK and Elemental implementations performed best with a TXY Z ordering of the
torus organized into either 64× 128 or 128× 64 process grids, both of which split the Y
dimension of the torus between the row and column subcommunicators.

Figure 7: Back transformation. This operation requires the Householder trans-
formations that form Q to be applied to the eigenvectors of the tridiagonal matrix T .
ScaLAPACK uses compact WY-transforms (a transform that applies multiple House-
holder transformations simultaneously in order to cast computation in terms of dgemm).
The Elemental implementation employs a variant on the compact WY-transform, the
block UT transform [Joffrain et al. 2006]. This variant has the advantage that form-
ing the block transform requires less communication, and nearly a 100% performance
improvement is demonstrated for the larger problem sizes.

Figure 8: Solution of a triangular system with multiple right-hand sides.
The first published parallelization of this operation is given in [Chtchelkanova et al.
1997], and Elemental’s implementations closely follow the algorithms suggested
therein. While ScaLAPACK incorporates the same approach, it also includes several
other approaches, and which algorithm to execute is chosen at runtime based upon
estimates of communication volume. That Elemental only implements a single algo-
rithm and still achieves substantial performance improvements suggests to us that
the algorithmic selection logic in the ScaLAPACK implementation is far from optimal
and needlessly complex.

5. CONCLUSION
The goal of this paper is to demonstrate that parallel dense linear algebra libraries do
not need to sacrifice performance in order to maintain a high level of abstraction.

5pdsyntrd only supports lower-triangular storage of the symmetric matrix.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:16 Jack Poulson et al.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

Dimension (in thousands)

T
F

lo
ps

Elemental
pdormtr

Fig. 7. Real double-precision application of the back transformation on 8192 cores of Blue Gene/P. The top
of the graph is set to 60% of theoretical peak performance, 16.71 TFlops.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

Dimension (in thousands)

T
F

lo
ps

Elemental
pdtrsm

Fig. 8. Real double-precision B := L−TB (trsm) on 8192 cores of Blue Gene/P. The top of the graph is set
to 50% of theoretical peak performance, 13.96 TFlops.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:17

As of this writing, Elemental supports the following functionality, for both real and
complex datatypes:

— All level-3 BLAS (and many extensions)
— Determinants, traces, and various norms
— (Semi-definite) Cholesky, LDLT , LDLH , LQ, LU, and QR factorization
— In-place inversion of general, HPD, and triangular matrices
— Reduction to tridiagonal and bidiagonal form
— (Skew-)Hermitian eigenvalue problems, including subset computations
— SVD, polar decompositions, and pseudoinverses
— Hermitian pseudoinverses, square roots, and matrix functions
— Hermitian generalized-definite eigenvalue problems, including subset computations

We envision a string of additional papers in the near future.

— In Appendix A, we hint at a set-based notation for describing the data distributions
that underly Elemental. The key insight is that relationships between the sets that
define different distributions dictate the communications that are required for the
redistribution. A full paper on this topic is being written.

— A paper that discusses in detail the parallel implementation of A := L−1AL−H and
A := LHAL has been submitted for publication [Poulson et al. 2011]. That paper more
clearly explains how Elemental benefits from the FLAME approach to deriving algo-
rithms and more explicitly addresses the question of how much of the performance
improvement is due to algorithm choice and how much is due to better implemen-
tation (which attribute in part to the fact that the API used to program algorithms
makes it easier to implement more complex algorithms).

— As mentioned in the abstract and introduction, a major reason for creating a new dis-
tributed memory dense matrix library and framework is the arrival of many-core ar-
chitectures that can be viewed as clusters on a single chip, like the SCC architecture.
The Elemental library has already been ported to the SCC processor by replacing the
MPI collective communication library with calls to a custom collective communica-
tion library for that architecture. Preliminary results of that experiment are reported
in [Marker et al. 2011a].

— One of the goals of the FLAME project is to make the translation of sequential al-
gorithms coded using the FLAME/C API [Bientinesi et al. 2005b; van de Geijn and
Quintana-Ortı́ 2008], used to develop the libflame library [Van Zee 2009], to opti-
mized Elemental code mechanical. Preliminary work towards this goal is reported
in [Marker et al. 2011b].

Together these, and other such papers, will build a body of evidence in support of some
of the less substantiated claims in this introductory paper.

Availability
The Elemental package is available under the New BSD License at
http://code.google.com/p/elemental.

A. ELEMENTAL DISTRIBUTION AND CHOLESKY FACTORIZATION: MORE DETAILS
In this appendix, we describe the basics of distribution and redistribution in Elemental
through a parallel Cholesky factorization.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:18 Jack Poulson et al.

Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·
α4,0 α4,3 α4,6 · · · α4,1 α4,4 α4,7 · · · α4,2 α4,5 α4,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α3,0 α3,3 α3,6 · · · α3,1 α3,4 α3,7 · · · α3,2 α3,5 α3,8 · · ·
α5,0 α5,3 α5,6 · · · α5,1 α5,4 α5,7 · · · α5,2 α5,5 α5,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Fig. 9. Distribution A[MC ,MR] when r × c = 2× 3, Ms
C = {s, s+ r, . . .}, and Mt

R = {t, t+ c, . . .}.

A.1. Assumptions
In our discussion, we assume that the p processes form a (logical) p = r × c mesh. We
let A ∈ Fm×n, where F is any field, equal

A =


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1

...
...

. . .
...

αm−1,0 αm−1,1 · · · αm−1,n−1

 .

We will use the first iteration of the Cholesky factorization algorithm discussed in the
main body of the paper for illustration, with algorithmic blocks size balg = 3, so that

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 =



α00 α01 α02 α03 α04 α05 · · ·
α10 α11 α12 α13 α14 α15 · · ·
α20 α21 α22 α23 α24 α25 · · ·
α30 α31 α32 α33 α34 α35 · · ·
α40 α41 α42 α43 α44 α45 · · ·
α50 α51 α52 α53 α54 α55 · · ·

...
...

...
...

...
...

. . .


(1)

A.2. Distribution A[MC ,MR]

If MC = {M0
C , · · · ,M

r−1
C } and MR = {M0

R, · · · ,M
c−1
R } are partitionings of the natural

numbers, then A[MC ,MR] will be used to denote the distribution of matrix A that
assigns to process (s, t) the submatrix of A where the row indices and column indices
are selected from Ms

C and M t
R, respectively.

In the case of the elemental distribution, Ms
C = {s, s+ r, s+ 2r, . . .} and M t

R = {t, t+
c, t+ 2c, . . .}, which means that A[MC ,MR] assigns αs,t αs,t+c · · ·

αs+r,t αs+r,t+c · · ·
...

...


to process (s, t) of an r × c mesh. We illustrate this in Figure 9 for r × c = 2× 3.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:19

A.3. Distribution A[?, ?]

In our parallel Cholesky factorization, A11 is duplicated to all processes before being
redundantly factored. We denote duplication of the entire matrix A by A[?, ?], which
is meant to indicate that each process keeps all row and column indices. Duplicating
only submatrix A11 is denoted by A11[?, ?], as illustrated by

Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,1 α0,2 α0,0 α0,1 α0,2 α0,0 α0,1 α0,2

α1,0 α1,1 α1,2 α1,0 α1,1 α1,2 α1,0 α1,1 α1,2

α2,0 α2,1 α2,2 α2,0 α2,1 α2,2 α2,0 α2,1 α2,2

Process (1,0) Process (1,1) Process (1,2)
α0,0 α0,1 α0,2 α0,0 α0,1 α0,2 α0,0 α0,1 α0,2

α1,0 α1,1 α1,2 α1,0 α1,1 α1,2 α1,0 α1,1 α1,2

α2,0 α2,1 α2,2 α2,0 α2,1 α2,2 α2,0 α2,1 α2,2

for the matrix in (1).
The communication that takes A11[MC ,MR] to A11[?, ?] is an allgather involving all

processes. In our code, this is accomplished by the command
A11_STAR_STAR = A11_MC_MR;

The inverse operation that redistributes A11[?, ?] back to A11[MC ,MR] requires no com-
munication, since all processes have a copy, and is accomplished by the command

A11_MC_MR = A11_STAR_STAR;

A.4. Distribution A[?, VR]

In our Cholesky factorization, we must compute A12 := A−H
11 A12, where A11 is upper

triangular part of matrix A11. By the time this computation occurs, A11 is available
as A11[?, ?] (duplicated to all nodes) but A12 is distributed as part of A: A12[MC ,MR],
complicating the parallelization of this operation. The question is how to redistribute
the data so that the computation can easily parallelized.

Consider our prototypical matrix in (1). If we redistribute A12 like

Process 0 Process 1 Process 2
α0,6 α0,12 · · · α0,7 α0,13 · · · α0,8 α0,14 · · ·
α1,6 α1,12 · · · α1,7 α1,13 · · · α1,8 α1,14 · · ·
α2,6 α2,12 · · · α2,7 α2,13 · · · α2,8 α2,14 · · ·

Process 3 Process 4 Process 5
α0,3 α0,9 α0,15 · · · α0,4 α0,10 α0,16 · · · α0,5 α0,11 α0,17 · · ·
α1,3 α1,9 α1,15 · · · α1,4 α1,10 α1,16 · · · α1,5 α1,11 α1,17 · · ·
α2,3 α2,9 α2,15 · · · α2,4 α2,10 α2,16 · · · α2,5 α2,11 α2,17 · · ·

then (
α0,0 α0,1 α0,2

0 α1,1 α1,2

0 0 α2,2

)−1(
α0,3 α0,4 · · ·
α1,3 α1,4 · · ·
α2,3 α2,4 · · ·

)

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:20 Jack Poulson et al.

can be parallized trivially because A11 is already available to all processes and locally
the computation (

α0,0 α0,1 α0,2

0 α1,1 α1,2

0 0 α2,2

)−1(
α0,k α0,k+p · · ·
α1,k α1,k+p · · ·
α2,k α2,k+p · · ·

)
can commense on what is now labeled as process k (except that the first three columns
are skipped in this example).

We now construct a distribution that facilitates the above insight. To do so, we view
the processes as a linear array indexed in row-major order so that process (s, t) in the
2D mesh is process k = sc + t in our 1D view of the processes. Next, we create a par-
titioning of the natural numbers {V 0

R, · · · , V
p−1
R } where V kR = {k, k + p, k + 2p, . . .}. The

distribution A[?, VR] now assigns the columns V kR of matrix A to process k, viewing the
processes as a 1D array. In other words, it assigns the columns V sc+tR to process (s, t),
viewing the processes as a 2D array. Or, one can view this as the set that determines
what part of A is assigned to process k = sc + t selects all rows of A (hence the ?) and
the columns of A in the set V kR .

Now, by design, for our elemental distributionM t
R = ∪s=0,r−1V

sc+t
R . What this means

is that to redistribute A12[MC ,MR] to A12[?, VR], elements of A12 need only be commu-
nicated within columns of processes, via an all-to-all collective communication. The
command that redistributes A12 in this fashion is given by

A12_STAR_VR = A12_MC_MR;

A.5. Distributions A[?,MR] and A[?,MC]

Finally, let us look at the update A22 := A22−AH12A21. The resulting matrix overwrites
A22 and hence should be distributed like A22: (A22 − AH12A21)[MC ,MR]. To make all of
the computation local, we note that on process (s, t)

(A22 −AH12A12)[M
s
C ,M

t
R] = A22[M

s
C ,M

t
R]−AH12A12[M

s
C ,M

t
R]

= A22[M
s
C ,M

t
R]− (AH12)[M

s
C , ?]A12[?,M

t
R]

= A22[M
s
C ,M

t
R]−A12[?,M

s
C]
HA12[?,M

t
R].

These three distributions are illustrated in Figure 10.
Let us focus on process (1, 2) where the following update must happen as part of

A22 := A22 −AH12A12:
α3,5 α3,8 α3,11 · · ·
α5,5 α5,8 α5,11 · · ·
α7,5 α7,8 α7,11 · · ·
α9,5 α9,8 α9,11 · · ·

...
...

...
. . .

− :=

(
α0,3 α0,5 α0,7 · · ·
α1,3 α1,5 α1,7 · · ·
α2,3 α2,5 α2,7 · · ·

)H (
α0,5 α0,8 α0,11 · · ·
α1,5 α1,8 α1,11 · · ·
α2,5 α2,8 α2,11 · · ·

)
. (2)

(Here the gray entries are those that are not updated due to symmetry.) If the elements
of A12 are distributed as illustrated in Figure 10 then each process could locally update
its part of A22.

The commands
A12_STAR_MC = A12_STAR_VR;
A12_STAR_MR = A12_STAR_VR;

redistribute (the updated) A12 as required. The second command requires an allgather
within column of processes. The first requires a more complicated, but equally sys-
tematic, sequence of collective communications (namely, a permutation followed by an
allgather within rows). The details go beyond the scope of this paper.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:21

Process (0,0) Process (0,1) Process (0,2)
α0,0 α0,3 α0,6 · · · α0,1 α0,4 α0,7 · · · α0,2 α0,5 α0,8 · · ·
α2,0 α2,3 α2,6 · · · α2,1 α2,4 α2,7 · · · α2,2 α2,5 α2,8 · · ·
α4,0 α4,3 α4,6 · · · α4,1 α4,4 α4,7 · · · α4,2 α4,5 α4,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Process (1,0) Process (1,1) Process (1,2)
α1,0 α1,3 α1,6 · · · α1,1 α1,4 α1,7 · · · α1,2 α1,5 α1,8 · · ·
α3,0 α3,3 α3,6 · · · α3,1 α3,4 α3,7 · · · α3,2 α3,5 α3,8 · · ·
α5,0 α5,3 α5,6 · · · α5,1 α5,4 α5,7 · · · α5,2 α5,5 α5,8 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

Distributions A[MC ,MR] and A22[MC ,MR] (highlighted).

Process (0,0) Process (0,1) Process (0,2)
α0,4 α0,6 α0,8 · · · α0,4 α0,6 α0,8 · · · α0,4 α0,6 α0,8 · · ·
α1,4 α1,6 α1,8 · · · α1,4 α1,6 α1,8 · · · α1,4 α1,6 α1,8 · · ·
α2,4 α2,6 α2,8 · · · α2,4 α2,6 α2,8 · · · α2,4 α2,6 α2,8 · · ·

Process (1,0) Process (1,1) Process (1,2)
α0,3 α0,5 α0,7 · · · α0,3 α0,5 α0,7 · · · α0,3 α0,5 α0,7 · · ·
α1,3 α1,5 α1,7 · · · α1,3 α1,5 α1,7 · · · α1,3 α1,5 α1,7 · · ·
α2,3 α2,5 α2,7 · · · α2,3 α2,5 α2,7 · · · α2,3 α2,5 α2,7 · · ·

Distribution A12[?,MC].

Process (0,0) Process (0,1) Process (0,2)
α0,3 α0,6 α0,9 · · · α0,4 α0,7 α0,10 · · · α0,5 α0,8 α0,11 · · ·
α1,3 α1,6 α1,9 · · · α1,4 α1,7 α1,10 · · · α1,5 α1,8 α1,11 · · ·
α2,3 α2,6 α2,9 · · · α2,4 α2,7 α2,10 · · · α2,5 α2,8 α2,11 · · ·

Process (1,0) Process (1,1) Process (1,2)
α0,3 α0,6 α0,9 · · · α0,4 α0,7 α0,10 · · · α0,5 α0,8 α0,11 · · ·
α1,3 α1,6 α1,9 · · · α1,4 α1,7 α1,10 · · · α1,5 α1,8 α1,11 · · ·
α2,3 α2,6 α2,9 · · · α2,4 α2,7 α2,10 · · · α2,5 α2,8 α2,11 · · ·

Distribution A12[?,MR].
Fig. 10. The distribution A22[MC ,MR] (top), A12[?,MC] (middle) and A12[?,MR] (bottom) so that locally
on each process A22 := A22−AH

12A12 can be computed. For example, process (1, 2) can then update its local
elements as indicated in Equation (2).

In the Cholesky factorization, due to the fact that A12[?,MR] gives each process a
superset of the data required for A12[MC ,MR], the updated values of A12 can be stored
using the command

A12_MC_MR = A12_STAR_MR;
which simply performs local copies.

Acknowledgements
This research was partially sponsored by NSF grants OCI-0850750 and CCF-0917167,
grants from Microsoft, an unrestricted grant from Intel, and a fellowship from the In-
stitute of Computational Engineering and Sciences. Jack Poulson was also partially

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:22 Jack Poulson et al.

supported by a fellowship from the Institute of Computational Engineering and Sci-
ences, and Bryan Marker was partially supported by a Sandia National Laboratory
fellowship. This research used resources of the Argonne Leadership Computing Facil-
ity at Argonne National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under contract DE-AC02-06CH11357; early experiments
were performed on the Texas Advanced Computing Center’s Ranger Supercomputer.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation (NSF).

We would like to thank John Lewis (Cray) and John Gunnels (IBM T.J. Watson Re-
search Center) for their constructive comments on this work and Brian Smith (IBM
Rochester) for his help in avoiding performance problems in Blue Gene/P’s collective
communication library.

REFERENCES
ALPATOV, P., BAKER, G., EDWARDS, C., GUNNELS, J., MORROW, G., OVERFELT, J., VAN DE GEIJN, R.,

AND WU, Y.-J. J. 1997. PLAPACK: Parallel Linear Algebra Package – design overview. In Proceedings
of SC97.

ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, L. S., DEMMEL, J., DONGARRA, J. J., DU CROZ, J.,
HAMMARLING, S., GREENBAUM, A., MCKENNEY, A., AND SORENSEN, D. 1999. LAPACK Users’ Gide
(third ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

ANDERSON, E., BENZONI, A., DONGARRA, J., MOULTON, S., OSTROUCHOV, S., TOURANCHEAU, B., AND
VAN DE GEIJN, R. 1992. LAPACK for distributed memory architectures: Progress report. In Proceedings
of the Fifth SIAM Conference on Parallel Processing for Scientific Computing. SIAM, Philadelphia, 625–
630.

BENNIGHOF, J. K. AND LEHOUCQ, R. 2003. An automated multilevel substructuring method for eigenspace
computation in linear elastodynamics. SIAM. J. Sci. Comput 25, 2004.

BIENTINESI, P., DHILLON, I. S., AND VAN DE GEIJN, R. A. 2005a. A parallel eigensolver for dense symmet-
ric matrices based on multiple relatively robust representations. SIAM Journal on Scientific Comput-
ing 27, 1, 43–66.

BIENTINESI, P., QUINTANA-ORTÍ, E. S., AND VAN DE GEIJN, R. A. 2005b. Representing linear algebra
algorithms in code: The FLAME application programming interfaces. ACM Trans. Math. Soft. 31, 1,
27–59.

BLACKFORD, L. S., CHOI, J., CLEARY, A., D’AZEVEDO, E., DEMMEL, J., DHILLON, I., DONGARRA, J.,
HAMMARLING, S., HENRY, G., PETITET, A., STANLEY, K., WALKER, D., AND WHALEY, R. C. 1997.
ScaLAPACK Users’ Guide. SIAM.

CHAN, E., HEIMLICH, M., PURKAYASTHA, A., AND VAN DE GEIJN, R. 2007a. Collective communication:
theory, practice, and experience. Concurrency and Computation: Practice and Experience 19, 13, 1749–
1783.

CHAN, E., QUINTANA-ORTÍ, E., QUINTANA-ORTÍ, G., AND VAN DE GEIJN, R. 2007b. SuperMatrix out-of-
order scheduling of matrix operations for SMP and multi-core architectures. In SPAA ’07: Proceedings
of the Nineteenth ACM Symposium on Parallelism in Algorithms and Architectures. 116–126.

CHOI, J., DONGARRA, J. J., OSTROUCHOV, L. S., PETITET, A. P., WALKER, D. W., AND WHALEY, R. C.
1994. The design and implementation of the ScaLAPACK LU, QR and Cholesky factorization routines.
LAPACK Working Note 80 UT-CS-94-246, University of Tennessee. Sept.

CHTCHELKANOVA, A., GUNNELS, J., MORROW, G., OVERFELT, J., AND VAN DE GEIJN, R. A. 1997. Paral-
lel implementation of BLAS: General techniques for level 3 BLAS. Concurrency: Practice and Experi-
ence 9, 9, 837–857.

CUPPEN, J. J. M. 1981. A divide and conquer method for the symmetric tridiagonal eigenvalue problem.
Numer. Math. 36, 177–195.

DHILLON, I. S. 1997. A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem.
Ph.D. thesis, EECS Department, University of California, Berkeley.

DONGARRA, J. AND OSTROUCHOV, S. 1990. LAPACK block factorization algorithms on the Intel iPSC/860.
LAPACK Working Note 24, Technical Report CS-90-115, University of Tennessee. Oct.

DONGARRA, J. AND VAN DE GEIJN, R. 1992. Reduction to condensed form on distributed memory architec-
tures. Parallel Computing 18, 973–982.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

Elemental 0:23

DONGARRA, J., VAN DE GEIJN, R., AND WALKER, D. 1994. Scalability issues affecting the design of a dense
linear algebra library. J. Parallel Distrib. Comput. 22, 3.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND DUFF, I. 1990. A set of level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft. 16, 1, 1–17.

EDWARDS, C., GENG, P., PATRA, A., AND VAN DE GEIJN, R. 1995. Parallel matrix distributions: have we
been doing it all wrong? Tech. Rep. TR-95-40, Department of Computer Sciences, The University of
Texas at Austin.

FORD, B. AND HALL, G. 1974. The generalized eigenvalue problem in quantum chemistry. Computer Physics
Communications 8, 5, 337 – 348.

GOLUB, G. H. AND VAN LOAN, C. F. 1989. Matrix Computations 2nd Ed. The Johns Hopkins University
Press, Baltimore.

GOTO, K. AND VAN DE GEIJN, R. A. 2008. Anatomy of high-performance matrix multiplication. ACM Trans.
Math. Soft. 34, 3: Article 12, 25 pages.

GUNNELS, J. A., GUSTAVSON, F. G., HENRY, G. M., AND VAN DE GEIJN, R. A. 2001. FLAME: Formal
Linear Algebra Methods Environment. ACM Transactions on Mathematical Software 27, 4, 422–455.

HENDRICKSON, B., JESSUP, E., AND SMITH, C. 1999. Toward an efficient parallel eigensolver for dense
symmetric matrices. SIAM J. Sci. Comput. 20, 3, 1132–1154.

HENDRICKSON, B. A. AND WOMBLE, D. E. 1994. The torus-wrap mapping for dense matrix calculations on
massively parallel computers. SIAM J. Sci. Stat. Comput. 15, 5, 1201–1226.

HOWARD, J., DIGHE, S., HOSKOTE, Y., VANGAL, S., FINAN, D., RUHL, G., JENKINS, D., WILSON, H.,
BORKAR, N., SCHROM, G., PAILET, F., JAIN, S., JACOB, T., YADA, S., MARELLA, S., SALIHUNDAM, P.,
ERRAGUNTLA, V., KONOW, M., RIEPEN, M., DROEGE, G., LINDEMANN, J., GRIES, M., APEL, T., HEN-
RISS, K., LUND-LARSEN, T., STEIBL, S., BORKAR, S., DE1, V., WIJNGAART, R. V. D., AND MATTSON,
T. 2010. A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS. In Proceedings of the
International Solid-State Circuits Conference.

JOFFRAIN, T., LOW, T. M., QUINTANA-ORTÍ, E. S., VAN DE GEIJN, R., AND VAN ZEE, F. G. 2006. Accumu-
lating Householder transformations, revisited. ACM Trans. Math. Softw. 32, 2, 169–179.

JOHNSSON, S. L. 1987. Communication efficient basic linear algebra computations on hypercube architec-
tures. J. of Par. Distr. Comput. 4, 133–172.

MARKER, B., CHAN, E., POULSON, J., VAN DE GEIJN, R., VAN DER WIJNGAART, R. F., MATTSON, T. G.,
AND KUBASKA, T. E. 2011a. Programming many-core architectures - a case study: Dense matrix com-
putations on the intel scc processor. Concurrency and Computation: Practice and Experience. To appear.

MARKER, B., TERREL, A., POULSON, J., BATORY, D., AND VAN DE GEIJN, R. 2011b. Mechanizing the expert
dense linear algebra developer. FLAME Working Note #58 TR-11-18, The University of Texas at Austin,
Department of Computer Sciences. April.

MATTSON, T. G., VAN DER WIJNGAART, R., AND FRUMKIN, M. 2008. Programming the Intel 80-core
network-on-a-chip terascale processor. In SC’08: Proceedings of the 2008 ACM/IEEE conference on Su-
percomputing. IEEE Press, Piscataway, NJ, USA, 1–11.

PETITET, A., WHALEY, R. C., DONGARRA, J., AND CLEARY, A. HPL Algorithm. http://netlib.org/
benchmark/hpl/algorithm.html.

POULSON, J., VAN DE GEIJN, R., AND BENNIGHOF, J. 2011. Parallel algorithms for reducing the generalized
hermitian-definite eigenvalue problem. FLAME Working Note #56. Technical Report TR-11-05, The
University of Texas at Austin, Department of Computer Sciences. February.

QUINTANA-ORTÍ, G., QUINTANA-ORTÍ, E. S., VAN DE GEIJN, R. A., VAN ZEE, F. G., AND CHAN, E. 2009.
Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Transactions on Mathe-
matical Software 36, 3, 14:1–14:26.

ScaLAPACK 2010. Home Page. http://www.netlib.org/scalapack/scalapack_home.html.
SCHREIBER, R. 1992. Scalability of sparse direct solvers. Graph Theory and Sparse Matrix Computations 56.
SEARS, M. P., STANLEY, K., AND HENRY, G. 1998. Application of a high performance parallel eigensolver to

electronic structure calculations. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing
(CDROM). Supercomputing ’98. IEEE Computer Society, Washington, DC, USA, 1–1.

STEWART, G. 1990. Communication and matrix computations on large message passing systems. Parallel
Computing 16, 27–40.

STEWART, G. W. 1970. Incorporating origin shifts into the qr algorithm for symmetric tridiagonal matrices.
Commun. ACM 13, 365–367.

STRAZDINS, P. E. 1998. Optimal load balancing techniques for block-cyclic decompositions for matrix factor-
ization. In Proceedings of PDCN’98 2nd International Conference on Parallel and Distributed Computing
and Networks.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

0:24 Jack Poulson et al.

VAN DE GEIJN, R. Feb. 24–28, 1992. Dense linear solve on the Intel touchstone delta system. In Digest of
Papers: CompCon92, 37th IEEE Computer Society International Conference.

VAN DE GEIJN, R. A. 1997. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press.
VAN DE GEIJN, R. A. AND QUINTANA-ORTÍ, E. S. 2008. The Science of Programming Matrix Computations.

http://www.lulu.com/content/1911788.
VAN ZEE, F. G. 2009. libflame: The Complete Reference. www.lulu.com.
WHALEY, R. C. AND DONGARRA, J. J. 1998. Automatically tuned linear algebra software. In Proceedings of

SC’98.
WILKINSON, J. H. 1965. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, England.
WU, Y.-J. J., ALPATOV, P. A., BISCHOF, C., AND VAN DE GEIJN, R. A. 1996. A parallel implementation

of symmetric band reduction using PLAPACK. In Proceedings of Scalable Parallel Library Conference,
Mississippi State University. PRISM Working Note 35.

Received Received Month Year; revised revised Month Year; accepted accepted Month Year

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.

