Blue Gene Architecture: Past, Present, and (Near) Future

Raymond Loy
Applications Performance Engineering
Argonne Leadership Computing Facility
Blue Gene/P

System
72 Racks
73728 nodes
294912 cores
1 PF
144 TB DDR2

Rack

Node Card
32 node-cards
1024 nodes
4096 cores
13.9 TF
2 TB DDR2

32 nodes
128 cores
435 GF
64GB DDR2

Node Card

Compute Card

Chip
4 cores
13.6 GF
2GB DDR2
Summary: BG/P vs BG/L

- Increased clock
 - 1.2x from frequency bump 700 MHz => 850 MHz
- Processor density
 - Double the processors/node (4 vs. 2)
- Memory
 - higher bandwidth
 - Cache coherency
 - Allows 4 way SMP
 - supports OpenMP, pthreads
 - DMA for torus
- Faster communication
 - 2.4x higher bandwidth, lower latency for Torus and Tree networks
- Faster I/O
 - 10x higher bandwidth for Ethernet I/O
- Enhanced performance counters
- Inherited architectures
 - double Hummer FPU, torus, collective network, barrier
BPC chip
DD2.1 die
photograph

13mm x 13mm
90 nm process
208M transistors
88M in eDRAM
BG/P Compute Card
BGP Node Card

- 32 Compute nodes
- Optional IO card (one of 2 possible) with 10Gb optical link
- Local DC-DC regulators (6 required, 8 with redundancy)
32 Compute Nodes
128 cores

Hottest ASIC Tj
80°C@24W, 55°C@15W

Hottest DRAM
Tcase 75°C@0.3W

Outlet Air
Max +10°C

Optional IO card
(1 of 2 possible)

Inlet Air
min 2.5m/s
max 17°C

10Gb Ethernet

Local 48V input DC-DC regulators
5+1, 3+1 with redundancy. Vicor technology, tcase 60°C@120A

Argonne National Laboratory
First BG/P Rack
First 8 racks of BG/P: Covers removed
IBM Blue Gene/P
(a) Prior Art: Segregated, Non-Tapered Plenums
(Plenum Width Same Regardless of Flow Rate)

(b) Invention: Integrated, Tapered Plenums
(Plenum Width Larger where Flow Rate is Greater)

Shawn Hall 4-3-02
02-04-03 Angled Plenums
Power Efficient Computing

- Blue Gene/P 372 MFlops/Watt
 - Compare Blue Gene/L 210 MFlops/Watt
 - Only exceeded by IBM QS22 Cell processor (488Mflop/s/Watt)
- Single rack
 - Idle 8.6KW
 - Avg 21KW
 - Linpack 29KW
- Green500
 - November 2007
 - BG/P debuted taking #1-5 positions
 - June 2011
 - BG/P #29
 - BG/Q prototype rank #1
 - 165% more efficient than Top500 #1 (Tianhe-1A)
Memory Subsystem
Memory System Bottlenecks

L2 – L3 switch
Not a full core to L3 bank crossbar
Request rate and bandwidth are limited if two cores of one dual processor group access the same L3 cache bank

Banking for DDR2
4 banks on 512Mb DDR modules
Peak bandwidth only achievable if accessing 3 other banks before accessing the same bank again
Execution Modes in BG/P

Quad Mode (VNM)
- 4 Processes
- 1 Thread/Process

Dual Mode
- 2 Processes
- 1-2 Threads/Process

SMP Mode
- 1 Process
- 1-4 Threads/Process

Hardware Elements Black
Software Abstractions Blue
Communication subsystem
Blue Gene/P Interconnection Networks

3 Dimensional Torus
- Interconnects all compute nodes
- Virtual cut-through hardware routing
- 3.4 Gb/s on all 12 node links (5.1 GB/s per node)
- 0.5 µs latency between nearest neighbors, 5 µs to the farthest
- MPI: 3 µs latency for one hop, 10 µs to the farthest
- Communications backbone for point-to-point
- Requires half-rack or larger partition

Collective Network
- One-to-all broadcast functionality
- Reduction operations for integers and doubles
- 6.8 Gb/s of bandwidth per link per direction
- Latency of one way tree traversal 1.3 µs, MPI 5 µs
- Interconnects all compute nodes and I/O nodes

Low Latency Global Barrier and Interrupt
- Latency of one way to reach 72K nodes 0.65 µs, MPI 1.6 µs
Blue Gene/P Torus Network

Logic Unchanged from BG/L, except

Bandwidth

- BG/L: clocked at \(\frac{1}{4}\) processor rate, 1 Byte per 4 cycles
- BG/P: clocked at \(\frac{1}{2}\) processor rate, 1 Byte per 2 cycles

With frequency bump from 700 MHz to 850 MHz,
BG/P Links are 2.4x faster than BG/L

425 MB/s vs 175 MB/s

Same Network Bandwidth per Flops as BG/L

Primary interface is via DMA, rather than cores
- Run application in DMA mode, or core mode (not mixed)
- Software product stack uses DMA mode
<table>
<thead>
<tr>
<th>Message Size(bytes)</th>
<th>Bandwidth (MB/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 link</td>
<td></td>
</tr>
<tr>
<td>2 links</td>
<td></td>
</tr>
<tr>
<td>3 links</td>
<td></td>
</tr>
<tr>
<td>4 links</td>
<td></td>
</tr>
<tr>
<td>5 links</td>
<td></td>
</tr>
</tbody>
</table>
Torus Network Limitations (ALCF)

- Cabling of the ALCF BG/P
 - enables large partition configurations
 - puts some restrictions on small configurations

- Torus “Z” dimension spans pairs of racks
 - Note: half rack or more uses torus network
 - For single rack (1024 node) job, torus HW in adjacent rack is put in “passthrough” mode, looping back without its nodes participating
 - Prevents a 1024 node job in that adjacent rack

- Likewise
 - 4-rack (4096 node) job, prevents an adjacent 4096 node job

- Job scheduler (Cobalt) will prevent running conflicting jobs
Torus Network (Z dimension)
Floating Point Unit ("Double hummer")

Quad word Load
16 Bytes per instruction

Full range of parallel and cross SIMD floating-point instructions

Quad word Store
16 Bytes per instruction

Quad word load/store operations require data aligned on 16-Byte boundaries.

Alignment excepts have a time penalty
Performance Monitor Architecture

- Novel hybrid counter architecture
 - High density and low power using SRAM design
- 256 counters with 64 bit resolution
 - Fast interrupt trigger with configurable threshold
 - Performance analysis is key to achieving full system potential
Performance Monitor Features

- Counters for core events
 loads, stores, floating-point operations (flops)
- Counters for the memory subsystem
 cache misses, DDR traffic, prefetch info, etc.
- Counters for the network interfaces
 torus traffic, collective network, DMA, …
- Counts are tied to hardware elements
 counts are for cores or nodes, not processes or threads
- Performance monitor hardware is one unit per node;
 - Not all counters available simultaneously
System Level
Blue Gene System Organization

- **Compute nodes** dedicated to running user application, and almost nothing else - simple compute node kernel (CNK)
 - No direct login access
- **I/O nodes** run Linux and provide a more complete range of OS services – files, sockets, process launch, signaling, debugging, and termination
 - 64:1 ratio compute:I/O nodes
- **Service node** performs system management services (e.g., partitioning, heart beating, monitoring errors) - transparent to application software (admin login only)
Programming models and development environment

- **Familiar methods**
 - SPMD model - Fortran, C, C++ with MPI (MPI1 + subset of MPI2)
 - *Full language support with IBM XL and GNU compilers*
 - *Automatic SIMD FPU exploitation (limited)*
 - Linux development environment
 - *User interacts with system through front-end nodes running Linux – compilation, job submission, debugging*
 - *Compute Node Kernel provides look and feel of a Linux environment*
 - POSIX routines (with some restrictions: no fork() or system())
 - BG/P adds pthread support, additional socket support
 - *Tools – support for debuggers, MPI tracer, profiler, hardware performance monitors, visualizer (HPC Toolkit), PAPI*

- **Restrictions (which lead to significant benefits)**
 - *Space sharing - one parallel job per partition of machine, one thread per core in each compute node*
 - *Virtual memory is constrained to physical memory size*
General Parallel File System (GPFS) for Blue Gene

- Blue Gene can generate enormous I/O demand (disk limited)
 - BG/P IO-rich has 64 10Gb/rack – 80GB/sec
- Serving this kind of demand requires a parallel file system
- NFS for file I/O
 - Limited scalability
 - NFS has no cache consistency, making write sharing difficult
 - Poor performance, not enough read ahead/write behind
- GPFS runs on Blue Gene
 - GPFS clients in Blue Gene call external NSD servers
 - Brings traditional benefits of GPFS to Blue Gene
 - I/O parallelism
 - Cache consistent shared access
 - Aggressive read-ahead, write-behind
File system details

- Surveyor
 - 1 DataDirect 9550 SAN, 160TB raw storage
 - 320 * 500GB SATA HDD
 - 4 file servers
 - GPFS ~600 MB/s
 - PVFS ~1050 MB/s
 - Each server IBM x3655 2U
 - 2 dual-core x86_64 (2.6 GHz)
 - 12GB RAM
 - 4X SDR Infiniband
 - File server ↔ SAN
 - Myricom 10Gb/s
 - File server ↔ I/O nodes, login nodes
File system details (con’t)

- Intrepid
 - /gpfs/home
 - 4 DataDirect 9550 SANs total 1.1PB
 - 24 file servers IBM x3655 (~2000 MB/s)
 - /intrepid-fs0
 - 16 DataDirect 9900 SANs total 7.5 PB raw storage
 - Each with 480 * 1TB SATA HDD
 - 128 file servers (~62000 MB/s)
 - IBM x3455 (8GB RAM)
 - Networks
 - 4X SDR Infiniband (File server ↔ SAN)
 - Myricom 10Gb/s (File server ↔ I/O nodes, login nodes)
The Next Generation ALCF System: BG/Q

- DOE has approved our acquisition of “Mira”, a 10 Petaflops Blue Gene/Q system. An evolution of the Blue Gene architecture with:
 - 16 cores/node
 - 1 GB of memory per core, nearly a TB of memory in aggregate
 - 48 racks (over 780k cores)
 - 384 I/O nodes (128:1 Compute:I/O)
 - 32 I/O nodes for logins and/or data movers
 - Additional non-I/O login nodes
 - 2 service nodes
 - IB data network; 70 PB of disk with 470 GB/s of I/O bandwidth
 - Power efficient, water cooled

- Argonne and Livermore worked closely with IBM over the last few years to help develop the specifications for this next generation Blue Gene system

- 16 Projects Accepted into the Early Science Program

- Applications running on the BG/P should run immediately on the BG/Q, but may see better performance by exposing greater levels of parallelism at the node level
ALCF-2: Blue Gene/Q (Mira)
The story so far

Jan 2009
 – CD0 approved

Jul 2009
 – Leman Review (CD1/2a) passed

Jul 2010
 – Lehman Review (CD2b/3) passed

Aug 2010
 – Contract approved

2011
 – BG/Q Early Science Program begins
ALCF-2: Blue Gene/Q (Mira)

What’s next?

Mid 2011
- Early Access System
 - Approximately 128 nodes + 1 I/O node
 - Located at IBM, leased for ALCF use

Spring 2012
- T&D System delivery
 - 1-2 racks, 128:1 compute:IO node ratio (Same as Mira)

2012
- Mira delivery expected

2013
- Mira acceptance
- Expanded FAQ and other handy info