
Hardware Performance Monitor
(HPM) Toolkit

Users Guide

Christoph Pospiech

Advanced Computing Technology Center
IBM Research

pospiech@de.ibm.com
Phone: +49 − 351 − 86269826

Fax: +49 − 351 − 4758767

Version 3.2.2 - June 5, 2008

c©International Business Machines Corp. 2007, 2008
All Rights Reserved

LICENSE TERMS

The IBM High Performance Computing Toolkit (IHPCT) is distribu-
ted under a nontransferable, nonexclusive, and revocable license. The
HPM software is provided ”AS IS”. IBM makes no warranties, ex-

pressed or implied, including the implied warranties of mer-

chantability and fitness for a particular purpose. IBM has no
obligation to defend or indemnify against any claim of infringement,
including, but not limited to, patents, copyright, trade secret, or in-
tellectual property rights of any kind. IBM is under no obligation to
maintain, correct, or otherwise support this software. IBM does not
represent that the HPM Toolkit will be made generally available. IBM
does not represent that any software made generally available will be
similar to or compatible with the HPM Toolkit.

1

Contents

1 The HPM Toolkit 4

2 hpmcount 6

2.1 Quick Start . 6

2.2 Usage . 6

2.3 Events and Groups . 9

2.4 Multiplexing . 11

2.5 Derived Metrics . 12

2.5.1 What are Derived Metrics 12

2.5.2 MFlop Issues . 13

2.5.3 Latency Computation 14

2.6 Inheritance . 15

2.7 Considerations for MPI Parallel Programs 16

2.7.1 General Considerations 16

2.7.2 Distributors . 16

2.7.3 Aggregators . 17

2.7.4 Plug-ins shipped with the Tool Kit 18

2.7.5 User defined Plug-ins 19

2.7.6 Detailed Interface Description 19

2.7.7 Getting the plug-ins to work 22

2.8 Shared Object Trouble Shooting 24

3 LIBHPM 25

3.1 Quick Start . 25

2

3.2 Events and Groups . 26

3.3 Multiplexing . 28

3.4 Derived Metrics . 29

3.4.1 What are Derived Metrics 29

3.4.2 MFlop Issues . 30

3.4.3 Latency Computation 31

3.5 Inheritance . 32

3.6 Inclusive and Exclusive Values 33

3.6.1 What are Exclusive Values ? 33

3.6.2 Parent-Child Relations 33

3.6.3 Handling of Overlap Issues 35

3.6.4 Computation of Exclusive Values for Derived Metrics . 36

3.7 Function Reference . 36

3.8 Measurement Overhead . 39

3.9 Output . 40

3.10 Examples of Use . 41

3.10.1 C and C++ . 41

3.10.2 Fortran . 42

3.11 Multi-Threaded Program Instrumentation Issues 43

3.12 Considerations for MPI Parallel Programs 44

3.12.1 General Considerations 44

3.12.2 Distributors . 45

3.12.3 Aggregators . 45

3.12.4 Plug-ins shipped with the Tool Kit 45

3

3.12.5 User defined Plug-ins 47

3.12.6 Detailed Interface Description 47

3.12.7 Getting the plug-ins to work 50

3.13 Compiling and Linking . 51

3.13.1 Dynamic Linking . 51

3.13.2 Static Linking . 54

4 hpmstat 57

4.1 Quick Start . 57

4.2 Usage . 57

4.3 Events and Groups . 59

5 Reference 61

5.1 List of Environment Variables 61

5.2 Derived Metrics Description 61

1 The HPM Toolkit

The HPM Toolkit was developed for performance measurement of appli-
cations running on IBM systems supporting the following processors and
operating systems:

PPC970 AIX 5L or Linux

Power4 AIX 5L or Linux

Power5 AIX 5L or Linux

Power5+ AIX 5L or Linux

Power6 AIX 5L or Linux

4

BG/L Linux

BG/P Linux

The HPM Toolkit consists of:

• An utility hpmcount, which starts an application and provides at the
end of execution wall clock time, hardware performance counters infor-
mation, derived hardware metrics, and resource utilization statistics12

• An instrumentation library libhpm, which provides instrumented pro-
grams with a summary output containing the above information for
each instrumented region in a program (resource utilization statistics
is provided only once, for the whole section of the program that is in-
strumented). This library supports serial and parallel (MPI, threaded,
and mixed mode) applications, written in Fortran, C, and C++.

• An utility hpmstat (depreciated)2

• A graphical user interface PeekPerf, for graphical visualization of the
performance file generated by libhpm. This is described in a separate
document.

Requirements:

On AIX 5L

• bos.pmapi, which is a product level file set provided with the AIX
distribution, but not installed by default.

On Linux

• The kernel has to be recompiled with the perfctr patch. The patch
can be obtained from the following URL
http://user.it.uu.se/∼mikpe/linux/perfctr/2.7/...
.../perfctr-2.7.20.tar.gz

1For more information on the resource utilization statistics, please refer to the getrusage
man pages.

2hpmcount and hpmstat are not available on BG/L and BG/P

5

• libperfctr.a compiled with 32-bit and 64-bit addressing (gcc -m32
and gcc -m64). The sources can be obtained from the following
URL http://user.it.uu.se/∼mikpe/linux/perfctr/2.7/...
.../perfctr-2.7.20.tar.gz

On BG/L or BG/P none

The owner and developer for the previous HPM versions 1 and 2 was Luiz
DeRose (ACTC).

2 hpmcount

2.1 Quick Start

hpmcount is essentially used the same way as the time command; the user
just types

hpmcount <program>

As a result, hpmcount appends various performance information at the end
of the screen (i.e. stdout) output. In particular it prints resource utilization
statistics, hardware performance counter information and derived hardware
metrics.

The resource usage statistics is directly taken from a call to getrusage(). For
more information on the resource utilization statistics, please refer to the
getrusage man pages. In particular, on Linux the man page for getrusage()
states that not all fields are meaningful under Linux. The corresponding
lines in hpmcount output have the value ”n/a”.

2.2 Usage

Sequential or shared memory programs

hpmcount [-o <name>] [-u] [-n] [-x] [-g <group>] \

[-a <plugin>] <program>

6

MPI or hybrid parallel programs

poe hpmcount [-o <name>] [-u] [-n] [-x] [-g <group>] \

[-a <plugin>] <program>

mpirun hpmcount [-o <name>] [-u] [-n] [-x] [-g <group>] \

[-a <plugin>] <program>

or

hpmcount [-h] [-l] [-c]

where: <program> program to be executed

-h displays this help message

-o <name> copies output to file <name>

-u make the file name <name> unique

-n no hpmcount output in stdout

when "-o" flag is used

-x adds formulas for derived metrics

-g <group> PM_API group number

-a <plugin> aggregate counters using the

plugin <plugin>

-l list groups

-c list counters and events

Detailed descriptions of selected options

-o <name> copies output to file <name>.

• The file name can be specified via option -o or via environment
variable HPM OUTPUT NAME. The option takes precedence if
there are conflicting specifications.

• The name <name>is actually expanded into three different file
names.

<name>.hpm is the file name for ASCII output — which is
basically a one-to-one copy of the screen output.

<name>.viz is the filename for XML output.

7

<name>.csv is the filename for output as comma separated
value file. This is not yet implemented in the current release.

• Which of these output files are generated is governed by three
additional environment variables. If none of those are set, only
the ASCII output is generated. If at least one is set, the following
rules apply.

HPM ASC OUTPUT If set to ’Y[...]’, ’y[...]’ or ’1’, triggers
the ASCII output.

HPM VIZ OUTPUT If set to ’Y[...]’, ’y[...]’ or ’1’, triggers the
XML output.

HPM CSV OUTPUT If set to ’Y[...]’, ’y[...]’ or ’1’, triggers
the csv output. This is not yet implemented in the current
release.

• Unless the -a option is chosen (see section 2.7 Considerations for
MPI Parallel Programs below), there is one output for each MPI
task. To avoid directing all output to the same file, the user is
advised to have a different name for each MPI task (using e.g. the
-u flag below) or direct the file to a non-shared file system.

-u make the file name <name>(specified via -o) unique.

• A string

<hostname><process_id>_<date>_<time>

is inserted before the last ’.’ in the file name.

• If the file name has no ’.’, the string is appended to the file name.

• If the only occurrence of ’.’ is the first character of the file name,
the string is prepended, but the leading ’ ’ is skipped.

• If the host name contains ’.’ (”long form”), only the portion
preceding the first ’.’ is taken. In case a batch queuing system
is used, the host name is taken from the execution host, not the
submitting host.

• Similarly for MPI parallel programs, the host name is taken from
the node where the MPI task is running. The addition of the
process id enforces different file names for MPI tasks running on
the same node.

• If used for an MPI parallel program, hpmcount tries to extract the
MPI task id (or MPI rank with respect to MPI COMM WORLD)

8

from the MPI environment. If successful, the process id is replaced
with the MPI task id.

• The date is given as dd.mm.yyyy, the time is given by hh.mm.ss
in 24h format using the local time zone.

• This flag is only active when the -o flag is used.

-n no hpmcount output in stdout when ”-o” flag is used.

• This flag is only active when the -o flag is used.

• Alternatively the environment variable HPM STDOUT=’no’ can
be used.

-x adds formulas for derived metrics

• For an explanation on derived metrics see section 2.5 below.

• For a formula reference see section 5.2 below.

• Alternatively the environment variable HPM PRINT FORMULA=’yes’
can be used.

-g <group[,<group>, ...]> specify group number(s)

• for an explanation on groups see sections 2.3 on Events and Groups
and 2.4 on Multiplexing below.

-a <plug-in> aggregate counters using the plug-in <plug-in>.

-l list groups

• for an explanation on groups see section 2.3 on Events and Groups
below.

-c list counters and events

• for an explanation on groups see section 2.3 on Events and Groups
below.

2.3 Events and Groups

The hardware performance counters information is the value of special CPU
registers that are incremented at certain events. The number of such registers
is different for each architecture.

9

Processor Architecture Number of performance
counter registers

PPC970 8
Power4 8
Power5 6

Power5+ 6
Power6 6
BG/L 52
BG/P 256

On both AIX and Linux, kernel extensions provide “counter virtualization”,
i.e. the user sees private counter values for his application. On a technical
side, the counting of the special CPU registers is frozen and the values are
saved whenever the application process is taken off the CPU and another
process gets scheduled. The counting is resumed when the user application
gets scheduled on the CPU.

The special CPU registers can count different events. On the Power CPUs the
are restrictions which registers can count what events. A call to “hpmcount
-c” will list all CPU counting registers and the events they can be monitoring.

Even more, there are lots of rules restricting the concurrent use of different
events. Each valid combination of assignments of events to hardware counting
registers is called a group. To make handling easier, a list of valid groups is
provided. A call to “hpmcount -l” will list all available groups and the events
they are monitoring. The -g option is provided to select a specific group to
be counted by hpmcount. If -g is not specified, a default group will be taken
according to the following table.

Processor Architecture Number of groups Default group

PPC970 41 23
Power4 64 60
Power5 148(140) 137

Power5+ 152 145
Power6 195 127
BG/L 16 0
BG/P 4 0

10

The number of groups for Power5 is 140 for AIX 5.2, and 148 for Linux and
AIX 5.3. The reason for this difference are different versions of bos.pmapi.The
last group (139) was changed and 8 new groups were appended. If HPM is
called with

hpmcount -g <a_new_group_number>

on AIX 5.2, it returns the following error message.

hpmcount ERROR - pm_set_program_mygroup:

pm_api : event group ID is invalid

2.4 Multiplexing

The idea behind multiplexing is to run several groups concurrently. This
is accomplished by running the first group for a short time interval, then
switching to the next group for the next short time interval, and keep do-
ing this in a round robin fashion for the groups until the event counting is
eventually stopped.

HPM supports multiplexing only on AIX5. The groups are specified as a
comma separated list.

hpmcount -g 1,2 <program>

OR

export HPM_EVENT_SET=’1,2’

hpmcount <program>

On Operating systems other than AIX5 this leads to the following error
message.

HPM ERROR - Multiplexing not supported:

too many groups or events specified: 2

Of course multiplexing means that neither of the groups has been run on the
whole code. Likewise it is unknown what fraction of the code was measured
with which group. It is assumed that the workload is sufficiently uniform

11

that the measured event counts can be (more or less) safely calibrated as if
the groups have been run separately on the whole code.

The default time interval for measuring one group on the application is
100ms. If the total execution time is shorter than this time interval, only
the first group in the list will be measured. All other counter values are 0.
This might result in NaNQ values for some derived metrics (see section 2.5
on derived metrics), if the formula for computing the derived metric requires
division by the counter value 0.

The duration of this time interval can be controlled by setting the following
environment variable.

export HPM_SLICE_DURATION=<integer value in ms>

This value is passed directly to AIX (more precisely bos.pmapi). AIX requires
the value to lie between 10ms an 30s.

The form of the output depends on the chosen aggregator (see sub section
2.7.3 on Aggregators). Without specifying an aggregator (i.e. with the de-
fault aggregator), the data for each group is printed in a separate section with
separate timing information. To have these data joined into one big group
with more counters, one should use the local merge aggregator (loc merge.so),
which described below.

2.5 Derived Metrics

2.5.1 What are Derived Metrics

Some of the events are difficult to interpret. Sometimes a combination of
events provide better information. In the sequel, such a recombination of
basic events will be called derived metric. HPM also provides a list of derived
metrics, which are defined in section Derived Metrics Description below.

Since each derived metric has its own set of ingredients, not all derived met-
rics are printed for each group. HPM automatically finds those derived met-
rics which are computable and prints them. As a convenience to the user,
the option -x will print not only the value of the derived metric, but also its
definition.

12

2.5.2 MFlop Issues

The two most popular derived metrics are the MFlop/s rate and the per-
centage of peak performance. The default group is chosen to make those two
derived metrics available without special choice of the -g parameter.

For Power5, there is no group that supports enough counters to compute
a MFlop/s rate. So an “Algebraic MFlop/s rate” was invented to bridge
this gap. This derived metric counts floating point adds, subs and mults
(including FMAs), but misses divides and square roots. If the latter two only
occur in negligible numbers (which is desirable for a HPC code anyway), the
“Algebraic MFlop/s rate” coincides with the usual definition of MFlop/s.
Again, different counter groups can be used to check this hypothesis. Group
137 (which exploits the “Algebraic MFlop/s rate”) is chosen the default group
for Power5.

The derived metric “percent of peak performance” was added new in this
version. For all, PPC970, Power4 and Power5, this is based on user time
rather than wall clock time, as the result stays correct if multi-threaded (e.g.
OpenMP) applications are run. For Power5, this is based on “Algebraic
MFlop/s”. This has not been tested on AIX 5.3, particularly when SMT is
active.

Flip-flop blues: Compared to the previous version, the meanings of MFlip/s
and MFlop/s are swapped. Not only many users were confused by the name
“MFlip/s” being used for what they expected to be MFlop/s. Also Ptools
(notably PAPI) is using a different nomenclature. HPM derived metric nam-
ing was changed to conform with this emerging standard.

On Power4, PPC970 and Power6 also weighted MFlop/s are available. These
are like odinary MFlop/s, except that divisions enter the evaluation with a
weight different from the other floating point operations. The weight factor is
provided by the user through the evironment variable HPM DIV WEIGHT.
If set to 1, the weighted MFlop/s coincide with the ordinary MFlop/s.
HPM DIV WEIGHT can take any positive integer number.

If this environment variable is not set, no weighted MFlop/s are computed.

13

2.5.3 Latency Computation

In addition, users can provide estimations of memory, cache, and TLB miss
latencies for the computation of derived metrics, with the following environ-
ment variables (please notice that not all flags are valid in all systems):

HPM MEM LATENCY latency for a memory load.

HPM AVG L3 LATENCY average latency for an L3 load.

HPM L3 LATENCY latency for an L3 load within a MCM.

HPM L35 LATENCY latency for an L3 load outside of the MCM.

HPM AVG L2 LATENCY average latency for an L2 load.

HPM L2 LATENCY latency for an L2 load from the processor.

HPM L25 LATENCY latency for an L2 load from the same MCM.

HPM L275 LATENCY latency for an L2 load from another MCM.

HPM TLB LATENCY latency for a TLB miss.

When computing derived metrics that take into consideration estimated la-
tencies for L2 or L3, the HPM Toolkit will use the provided “average latency”
only if the other latencies for the same cache level are not provided. For ex-
ample, it will only use the value set in HPM AVG L3 LATENCY, if at least
one of the values of HPM L3 LATENCY and HPM L35 LATENCY is not
set.

If environment variables are frequently used, they can be collected in a file
like this.

$ cat docs/examples/HPM_flags.env-example

export HPM_MEM_LATENCY=400

export HPM_L3_LATENCY=102

export HPM_L35_LATENCY=150

export HPM_L2_LATENCY=12

export HPM_L25_LATENCY=72

export HPM_L275_LATENCY=108

export HPM_TLB_LATENCY=700

export HPM_DIV_WEIGHT=5

14

The following command would enable these environment variables.

$. cat docs/examples/HPM_flags.env-example

2.6 Inheritance

On both, AIX and Linux, the “counter virtualization” and the group (i.e.
set of events) that is actually monitored is inherited from the process to any
of its children. Children in this context means threads or processes spawned
by the parent process. AIX and Linux, however differ in the ability of the
parent process to access the counter values of its children.

• On AIX all counter values of a process group can be collected.

• On Linux counter values are only available to the parent, if the child
has finished.

hpmcount makes use of this inheritance. Therefore, if hpmcount is called for
a program, the returned counter values are the sum of the counter values of
the program and all of the threads and processes spawned by it - at the time
the values are collected. For Linux this has to be restricted to the sum of
counter values of all children that have finished at the time the values are
collected. Even the latter is enough to catch the values of all threads of an
OpenMP program.

Also, suppose some user is using a program to bind threads to CPUs. Further,
suppose this program is called “taskset” and it would be used like this.

hpmcount taskset -c <num> <program_name>

hpmcount would first enable hardware event counting for the application
/usr/bin/taskset. This command then spawns the program <program name>,
which inherits all event counter settings. At the end hpmcount would print
counter values (and derived metrics) based on the sum of events for taskset
and the called program. Since taskset is a very slim application, the hpm-
count results would vastly represent the performance of the program <pro-
gram name>— which is what the user intended.

15

2.7 Considerations for MPI Parallel Programs

2.7.1 General Considerations

hpmcount is an inherently sequential program, looking only at the hardware
performance counters of a single process (and its children, as explained in
section 2.6 Inheritance). When started with “poe” or “mpirun”, one instance
of hpmcount is running for each MPI task. Unless additional action is taken
as described in the following sub sections, all these instances of hpmcount
are completely ignorant of each other. Consequently, each instance is writing
its own output. If the option -o is used, each instance is using the same file
name, which results in writing into the same file, if a parallel file system is
used. Of course, this can be (and should be) prevented by making the file
names unique through the ’-u’ option or the “HPM UNIQUE FILE NAME”
environment variable. Still it might be an unwanted side effect to have that
many output files.

For this reason the -a option (or equivalently, the environment variable
“HPM AGGREGATE”) triggers some aggregation before (possibly) restrict-
ing the output to a subset of MPI tasks. This formulation is deliberately
vague, because there can be many ways to aggregate hardware performance
counter information across MPI tasks. One way is to take averages, but
maximum or minimum values could be also thought of. The situation is fur-
ther complicated by allowing to run different groups on different MPI tasks.
After all, the instances of hpmcount are independent, which should allow
for this strategy. On architectures that allow for multiplexing (as described
in section 2.4 Multiplexing), some tasks could use multiplexing, others may
not. Of course averages, maxima and minima should only be taken on groups
which are alike.

Therefore the -a option and the environment variable “HPM AGGREGATE”
take a value, which is the name of a plug-in that defines the aggregation
strategy. Each plug-in is a shared object file containing two functions called
distributor and aggregator.

2.7.2 Distributors

The motivating example for the distributor function is allowing a different
hardware counter group on each MPI task. Of course this should be trivially
possible if different environment variable settings (or different hpmcount op-

16

tions) can be passed to different MPI tasks. Although many MPI stacks
allow for MPMD (multiple program multiple data) execution, it might be te-
dious and impractical to use the MPMD machinery just to vary the counting
groups across the MPI tasks.

Therefore, the distributor is a subroutine that determines the MPI task id (or
MPI rank with respect to MPI COMM WORLD) from the MPI environment
for the current process, and (re)sets environment variables depending on this
information. The environment variable may be any environment variable,
not just HPM EVENT SET, which motivated this function.

Consequently, the distributor is called before any environment variable is
evaluated by HPM. Command line options for hpmcount and hpmstat trigger
(re)setting the corresponding environment variables, which are then passed
to the distributor. Thus, the setting from the distributor takes precedence
over both, options and global environment variable settings.

Of course, the aggregator has to adapt to the HPM group settings done by
the distributor. This is why distributors and aggregators always come in
pairs. Each plug-in is containing just one such pair.

2.7.3 Aggregators

The motivating example is the aggregation of the hardware counter data
across the MPI tasks. In the simplest case this could be an average of the
corresponding values. Hence this function is called

• after the hardware counter data have been gathered,

• before the derived metrics are computed.

• before these data are printed,

In a generalized view, the aggregator is taking the raw results and rearranges
them for output.

Also, depending on the information of the MPI task id (or MPI rank with
respect to MPI COMM WORLD) the aggregator sets (or doesn’t set) a flag
to mark the current MPI task for HPM printing.

17

2.7.4 Plug-ins shipped with the Tool Kit

The following plug-ins are shipped with the toolkit. They can be found in

$(IHPCT_BASE)/lib or $(IHPCT_BASE)/lib64

mirror.so is the plug-in that is called when no plug-in is requested. The
aggregator is mirroring the raw hardware counter data in a one-to-one
fashion into the output function. Hence this name. It is also flagging
each MPI task as printing task. The corresponding distributor is a void
function. This plug-in doesn’t use MPI and also works in a non-MPI
context.

loc merge.so does a local merge on each MPI task separately. It is identical
to the mirror.so plug-in except for those MPI tasks that change the
hardware counter groups in the course of the measurement (e.g. by
multi-plexing). The different counter data, which are collected for only
part of the measuring interval, are proportionally extended to the whole
interval and joined into one big group that is entering derived metrics
computation. This way, more derived metrics can be determined at
the risk of computing garbage. The user is responsible for using this
plug-in only when it makes sense to use it. It is also flagging each MPI
task as printing task. The corresponding distributor is a void function.
This plug-in doesn’t use MPI and also works in a non-MPI context.

single.so does the same as mirror.so, but only on MPI task 0. The output
on all other tasks is discarded. This plug-in uses MPI functions and
can’t be used in a sequential context.

average.so is a plug-in for taking averages across MPI tasks. The distrib-
utor is reading the environment variable HPM EVENT SET (which
is supposed to be a comma separated list of group numbers) and dis-
tributes these group numbers in a round robin fashion to the MPI
tasks. The aggregator is first building a MPI communicator of all tasks
with equal hardware performance counting scenario. The communica-
tor groups may be different from the original round robin distribution.
This may happen if the conting group has been changed on some of
the MPI tasks after the first setting by the distributor. Next the ag-
gregator is taking the average across the subgroups formed by this
communicator. Finally it is flagging the MPI rank 0 in each group as

18

printing host. This plug-in uses MPI functions and can’t be used in a
sequential context.

2.7.5 User defined Plug-ins

There can be no doubt that this set of plug-ins can only be a first starter
kit and many more might be desirable. Rather than taking the average one
could think of taking maximum or minimum. There is also the possibility
of taking kind of a “history merge.so” by blending in results from previous
measurements. Chances are that however big the list of shipped plug-ins may
be, the one just needed is missing from the set (“Murphy’s law of HPM plug-
ins”). The only viable solution comes with disclosing the interface between
plug-in and tool and allowing for user defined plug-ins.

The easiest way to enable users to write their own plug-ins is by providing
examples. Hence the plug-ins described above are provided in source code
together with the Makefile that was used to generate the shared objects files.
These files can be found in the following place.

$(IHPCT_BASE)/examples/plugins

2.7.6 Detailed Interface Description

Each distributor and aggregator is a function returning an integer which is
0 on success and ! = 0 on error. In most cases the errors occur when calling
a system call like malloc(), which sets the errno variable. If the distributor
or aggregator returns the value of errno as return code, the calling HPM
tool sees to an expansion of this errno code into a readable error message. If
returning the errno is not viable, the function should return a negative value.

The function prototypes are defined in the following file.

$(IHPCT_BASE)/include/hpm_agg.h

This is a very short file with the following contents.

#include "hpm_data.h"

19

int distributor(void);

int aggregator(int num_in, hpm_event_vector in,

int *num_out, hpm_event_vector *out,

int *is_print_task);

The distributor has no parameters and is only required to (re)set environment
variables (via setenv()).

The aggregator takes the current hpm values on each task as an input vector
in and returns the aggregated values on the output vector out on selected
or all MPI tasks. To have utmost flexibility, the aggregator is responsible to
allocate the memory needed to hold the output vector out. The definition of
the data types used for in and out are provided in the following file.

$(IHPCT_BASE)/include/hpm_data.h

Finally the aggregator is supposed to set (or unset) a flag to mark the current
MPI task for HPM printing.

Form the above definitions it is apparent that the interface is defined in
C-Language. While it is in principle possible to use another language for
programming plug-ins, the user is responsible for using the same memory
layout for the input and output variables. There is no explicit FORTRAN
interface provided.

The hpm event vector in is a vector or list of num in entries of type hpm data

item. The latter is a struct containing members that describe the definition
and the results of a single hardware performance counting task.

/* NAME INDEX */

#define HPM_NTIM 8

#define HPM_TIME_WALLCLOCK 0

#define HPM_TIME_CYCLE 1

#define HPM_TIME_USER 2

#define HPM_TIME_SYSTEM 3

#define HPM_TIME_START 4

#define HPM_TIME_STOP 5

#define HPM_TIME_OVERHEAD 6

#define HPM_TIME_INIT 7

20

typedef struct {

int num_data;

hpm_event_info *data;

double times[HPM_NTIM];

int is_mplex_cont;

int is_rusage;

int mpi_task_id;

int instr_id;

int count;

int is_exclusive;

int xml_element_id;

char *description;

char *xml_descr;

} hpm_data_item;

typedef hpm_data_item *hpm_event_vector;

• Counting the events from a certain HPM group on one MPI task is
represented by a single element of type hpm data item.

• If multiplexing is used, the results span several consecutive elements,
each dedicated to one HPM group that take part in the multiplex set-
ting. On all but the first element the member is mplex cont is set to
TRUE to indicate that these elements are continuations of the first
element belonging to the same multiplex setup.

• If HPM groups are changed during the measurement, the results for dif-
ferent groups are recorded in different vector elements, but no is mplex

cont flag is set. This way results obtained via multiplexing can be dis-
tinguished from results obtained by ordinary group change.

• If libhpm and several instrumented sections are used, each instru-
mented code section will use separate elements of type hpm data item

to record the results. Each of these will have the member instr id set
with the first argument of hpmStart and the logical member is exclusive

set to TRUE or FALSE depending on whether the element hold inclu-
sive or exclusive counter results (see section 3.6 Inclusive and Exclusive
Values for details). Then all these different elements are concatenated
into a single vector.

21

• Finally, hpmcount, libhpm and hpmstat prepend the data from a call
to getrusage() to this vector, so the rusage data form the vector element
with index 0. This vector element is the only element with struct mem-
ber is rusage set to TRUE to distinguish it from ordinary hardware
performance counter data.

The output vector is of the same format. Each vector element enters the
derived metrics computation separately (unless is rusage == TRUE). Then
all vector elements (and the corresponding derived metrics) are printed in
the order given by the vector out. The output of each vector element will be
preceded by the string given in member description (which may include line
feeds as appropriate). The XML output will be marked with the text given
in xml descr.

This way the input vector in is providing a complete picture of what has been
measured on each MPI task. The output vector out is allowing complete
control on what is printed on which MPI task in what order.

2.7.7 Getting the plug-ins to work

The plug-ins have been compiled with the following Makefile

$(IHPCT_BASE)/examples/plugins/Makefile

using this command.

<g>make ARCH=<appropriate_archtitecture>

The include files for the various architectures are provided in subdirectory
make. The user is asked to note a couple of subtleties.

• The Makefile distinguishes “sequential” (specified in PLUGIN SRC)
and “parallel” plug-ins (specified in PLUGIN PAR SRC). The latter
are compiled and linked with the MPI wrapper script for the compiler/
linker. Unlike a static library, generation of a shared object requires
linking, not just compilation.

• On BG/L there are no shared objects, so ordinary object files are gen-
erated. On BG/L and BG/P just everything is parallel.

22

• If the MPI software stack requires the parallel applications to be linked
with a special start-up code (like poe remote main() for IBM MPI on
AIX), the shared object has to carry this start-up code. hpmcount is
a sequential application. Therefore the start-up code has to be loaded
and activated when the plug-in is loaded at run time. This turns the
sequential application hpmcount into a parallel application “on the fly”.
This sounds complicated but works pretty seamlessly, at least for IBM
MPI for user space protocol and MPICH and its variants. No further
user action is required to make this work.

• There are, however, some restrictions to be observed when writing plug-
in code. The MPI standard document disallows calling MPI Init()
twice on the same process. It appears that this is indeed not supported
on the majority of MPI software stacks, not even if an MPI Finalize()
is called between the two invocations of MPI Init().

• hpmcount is starting the user application via fork() and exec(). If
hpmcount would be starting MPI init() prior to the fork() (i.e. in
the distributor), chances are that the parallel environment would be
inherited across fork() and exec() and hence would collide with the
MPI Init() from the user application. Even an MPI Finalize() at the
end of the distributor does not help for the MPI Init() calls in the user
application and the aggregator. Hence the distributor must not call
any MPI function.. The MPI task id should be extracted by inspecting
environment variables that have been set by the MPI software stack.

• The aggregator, however, is executed in a different process than the
user application, so it cannot participate from the parallel environment
of the user application. It is usually fired up after the user applica-
tion has finalized its MPI environment. Sitting on a different process
the aggregator can and should initiate its own parallel environment.
Fortunately, all tested MPI software stacks reacted cooperative when
hpmcount out of a sudden turned into a parallel application and tried
to reuse the parallel set up from the previously ended user applica-
tion. The good news is that hpmcount turns parallel after the user
application has ended. Hence there is no competition for interconnect
resources between hpmcount and the user application.

• hpmcount uses a call to dlopen() to access the plug-in and makes use
of its functions. There is no dlopen() on BG/L, but there is no fork()
- and hence no hpmcount on BG/L and BG/P either.

23

• The “sequential” plug-ins are independent on the MPI software stack.
Hence they can be continued to be used even if the MPI software is
changed. The “parallel” plugins have to be re-compilated against the
new MPI software stack.

2.8 Shared Object Trouble Shooting

Occasionally one of the following error messages occur.

Problem:

hpmcount: error while loading shared libraries: libperfctr.so.6:

cannot open shared object file: No such file or directory

Solution: The Linux versions are based on the perfctr kernel extension
and libperfctr.a. Either libperfctr.a (more precisely libperfctr.so.6) is not
there; please check the prerequisites 1. Or the library exists, but resides in
an unusual place. In the latter case, please use the environment variable
LD LIBRARY PATH like in the following example.

export LD_LIBRARY_PATH=~/perfctr-2.7.18/usr.lib

Problem:

hpmcount: error while loading shared libraries: liblicense.so:

cannot open shared object file: No such file or directory

Solution: Most probably, liblicense.so is searched in the wrong place. Please
execute the following command (for bash).

export LD_LIBRARY_PATH=$IHPCT_BASE/lib:\

$IHPCT_BASE/lib64:$LD_LIBRARY_PATH

Problem:

$ hpmcount -a not_there.so hostname

HPM ERROR - Dynamic link error at dlopen():

not_there.so: cannot open shared object file:

No such file or directory

24

Solution: Either the plug-in is really not there (as the name indicates), or
it is not found. In the latter case, (for bash) please execute the following
command.

export LD_LIBRARY_PATH=$IHPCT_BASE/lib:\

$IHPCT_BASE/lib64:$LD_LIBRARY_PATH

3 LIBHPM

3.1 Quick Start

hpmcount (see section 2) provides hardware performance counter information
and derived hardware metrics (see section 2.5) for the whole program. If
this information is required for only part of the program, instrumentation
with libhpm is required. Libhpm is a library that provides a programming
interface to start and stop performance counting for an application program.
The part of the application program between start and stop of performance
counting will be called an instrumentation section. Any such instrumentation
section will be assigned a unique integer number as section identifier. A
simple case of an instrumented program may look as follows.

hpmInit(tasked, my program);

hpmStart(1, outer call);

do_work();

hpmStart(2, computing meaning of life);

do_more_work();

hpmStop(2);

hpmStop(1);

hpmTerminate(taskID);

Calls to hpmInit() and hpmTerminate() embrace the instrumented part,
every instrumentation section starts with hpmStart() and ends with hpm-
Stop(). The section identifier is the first parameter to the latter two func-
tions. As shown in the example, libhpm supports multiple instrumentation
sections, overlapping instrumentation sections, and each instrumented sec-
tion can be called multiple times. When hpmTerminate() is encountered, the
counted values are collected and printed.

25

The program above provides an example of two properly nested instrumen-
tation sections. For section 1 we can consider the “exclusive” time and and
“exclusive” counter values. By that we mean the difference of the values for
section 1 and section 2. The original values for section 1 would be called
“inclusive values” for matter of distinction. The terms “inclusive” and “ex-
clusive” for the embracing instrumentation section are chosen to indicate
whether counter values and times for the contained sections are included or
excluded. For more details see section 3.6 on inclusive and exclusive values.

Libhpm supports OpenMP and threaded applications. There is only a thread
safe version of libhpm. Either a thread-safe linker invocation (e.g. xlc r, xlf r)
should be used or the libpthreads.a must be included in the list of libraries.
For details on how to compile and link an application with Libhpm please go
to section 3.13 on compiling and linking.

Notice that libhpm collects information and performs summarization during
run-time. Thus, there could be a considerable overhead if instrumentation
sections are inserted inside inner loops.

Libhpm uses the same set of hardware counters events used by hpmcount
(see section 2).

If some error occurs the program is not automatically stopped. libhpm rather
sets some error indicator and let the user handle the error. For details see
section 3.7 on function reference.

3.2 Events and Groups

The hardware performance counters information is the value of special CPU
registers that are incremented at certain events. The number of such registers
is different for each architecture.

26

Processor Architecture Number of performance
counter registers

PPC970 8
Power4 8
Power5 6

Power5+ 6
Power6 6
BG/L 52
BG/P 256

On both AIX and Linux, kernel extensions provide “counter virtualization”,
i.e. the user sees private counter values for his application. On a technical
side, the counting of the special CPU registers is frozen and the values are
saved whenever the application process is taken off the CPU and another
process gets scheduled. The counting is resumed when the user application
gets scheduled on the CPU.

The special CPU registers can count different events. On the Power CPUs the
are restrictions which registers can count what events. A call to “hpmcount
-c” will list all CPU counting registers and the events they can be monitoring.

Even more, there are lots of rules restricting the concurrent use of different
events. Each valid combination of assignments of events to hardware counting
registers is called a group. To make handling easier, a list of valid groups is
provided. A call to “hpmcount -l” will list all available groups and the events
they are monitoring. The group or event set to be used can be selected via
the environment variable: HPM EVENT SET. If the environment variable
HPM EVENT SET is not specified, a default group will be taken according
to the following table.

Processor Architecture Number of groups Default group

PPC970 41 23
Power4 64 60
Power5 148(140) 137

Power5+ 152 145
Power6 195 127
BG/L 16 0
BG/P 4 0

27

The number of groups for Power5 is 140 for AIX 5.2, and 148 for Linux and
AIX 5.3. The reason for this difference are different versions of bos.pmapi.The
last group (139) was changed and 8 new groups were appended. If HPM is
called with

export HPM_EVENT_SET=<a_new_group_number>

on AIX 5.2, it returns the following error message.

hpmcount ERROR - pm_set_program_mygroup:

pm_api : event group ID is invalid

3.3 Multiplexing

The idea behind multiplexing is to run several groups concurrently. This
is accomplished by running the first group for a short time interval, then
switching to the next group for the next short time interval, and keep do-
ing this in a round robin fashion for the groups until the event counting is
eventually stopped.

HPM supports multiplexing only on AIX5. The groups are specified as a
comma separated list.

export HPM_EVENT_SET=’1,2’

On Operating systems other than AIX5 this leads to the following error
message.

HPM ERROR - Multiplexing not supported:

too many groups or events specified: 2

Of course multiplexing means that neither of the groups has been run on the
whole code. Likewise it is unknown what fraction of the code was measured
with which group. It is assumed that the workload is sufficiently uniform
that the measured event counts can be (more or less) safely calibrated as if
the groups have been run separately on the whole code.

28

The default time interval for measuring one group on the application is
100ms. If the total execution time is shorter than this time interval, only
the first group in the list will be measured. All other counter values are 0.
This might result in NaNQ values for some derived metrics (see section 3.4
on derived metrics), if the formula for computing the derived metric requires
division by the counter value 0.

The duration of this time interval can be controlled by setting the following
environment variable.

export HPM_SLICE_DURATION=<integer value in ms>

This value is passed directly to AIX (more precisely bos.pmapi). AIX requires
the value to lie between 10ms an 30s.

The form of the output depends on the chosen aggregator (see sub section
3.12.3 on Aggregators). Without specifying an aggregator (i.e. with the
default aggregator), the data for each group is printed in a separate sec-
tion with separate timing information. To have these data joined into one
big group with more counters, one should use the local merge aggregator
(loc merge.so), which described below.

3.4 Derived Metrics

3.4.1 What are Derived Metrics

Some of the events are difficult to interpret. Sometimes a combination of
events provide better information. In the sequel, such a recombination of
basic events will be called derived metric. HPM also provides a list of derived
metrics, which are defined in section Derived Metrics Description below.

Since each derived metric has its own set of ingredients, not all derived met-
rics are printed for each group. HPM automatically finds those derived met-
rics which are computable and prints them. As a convenience to the user,
not only the value of the derived metric, but also its definition will be printed
out, if the environment variable HPM PRINT FORMULA is set.

29

3.4.2 MFlop Issues

The two most popular derived metrics are the MFlop/s rate and the per-
centage of peak performance. The default group is chosen to make those two
derived metrics available without special choice of the environment variable
HPM EVENT SET.

For Power5, there is no group that supports enough counters to compute
a MFlop/s rate. So an “Algebraic MFlop/s rate” was invented to bridge
this gap. This derived metric counts floating point adds, subs and mults
(including FMAs), but misses divides and square roots. If the latter two only
occur in negligible numbers (which is desirable for a HPC code anyway), the
“Algebraic MFlop/s rate” coincides with the usual definition of MFlop/s.
Again, different counter groups can be used to check this hypothesis. Group
137 (which exploits the “Algebraic MFlop/s rate”) is chosen the default group
for Power5.

The derived metric “percent of peak performance” was added new in this
version. For all, PPC970, Power4 and Power5, this is based on user time
rather than wall clock time, as the result stays correct if multithreaded (e.g.
OpenMP) applications are run. For Power5, this is based on “Algebraic
MFlop/s”. This has not been tested on AIX 5.3, particularly when SMT is
active.

Flip-flop blues: Compared to the previous version, the meanings of MFlip/s
and MFlop/s are swapped. Not only many users were confused by the name
“MFlip/s” being used for what they expected to be MFlop/s. Also Ptools
(notably PAPI) is using a different nomenclature. HPM derived metric nam-
ing was changed to conform with this emerging standard.

On Power4, PPC970 and Power6 also weighted MFlop/s are available. These
are like odinary MFlop/s, except that divisions enter the evaluation with a
weight different from the other floating point operations. The weight factor is
provided by the user through the evironment variable HPM DIV WEIGHT.
If set to 1, the weighted MFlop/s coincide with the ordinary MFlop/s.
HPM DIV WEIGHT can take any positive integer number.

If this environment variable is not set, no weighted MFlop/s are computed.

30

3.4.3 Latency Computation

In addition, users can provide estimations of memory, cache, and TLB miss
latencies for the computation of derived metrics, with the following environ-
ment variables (please notice that not all flags are valid in all systems):

HPM MEM LATENCY latency for a memory load.

HPM AVG L3 LATENCY average latency for an L3 load.

HPM L3 LATENCY latency for an L3 load within a MCM.

HPM L35 LATENCY latency for an L3 load outside of the MCM.

HPM AVG L2 LATENCY average latency for an L2 load.

HPM L2 LATENCY latency for an L2 load from the processor.

HPM L25 LATENCY latency for an L2 load from the same MCM.

HPM L275 LATENCY latency for an L2 load from another MCM.

HPM TLB LATENCY latency for a TLB miss.

When computing derived metrics that take into consideration estimated la-
tencies for L2 or L3, the HPM Toolkit will use the provided “average latency”
only if the other latencies for the same cache level are not provided. For ex-
ample, it will only use the value set in HPM AVG L3 LATENCY, if at least
one of the values of HPM L3 LATENCY and HPM L35 LATENCY is not
set.

If environment variables are frequently used, they can be collected in a file
like this.

$ cat docs/examples/HPM_flags.env-example

export HPM_MEM_LATENCY=400

export HPM_L3_LATENCY=102

export HPM_L35_LATENCY=150

export HPM_L2_LATENCY=12

export HPM_L25_LATENCY=72

export HPM_L275_LATENCY=108

export HPM_TLB_LATENCY=700

export HPM_DIV_WEIGHT=5

31

The following command would enable these environment variables.

$. cat docs/examples/HPM_flags.env-example

3.5 Inheritance

The ”counter virtualization” and the group (i.e. set of events) that is actually
monitored is inherited from the process to any of its children, inparticular
threads that are spawned vi OpenMP. But there are differences among the
various operating systems.

• On AIX all counter values of a process group can be collected.

• On Linux and Blue Gene counter values are only available to the parent,
when the child has finished.

To make use of that concept, libhpm provides two flavors of start and stop
functions.

• hpmStart and hpmStop start and stop counting on all processes and
threads of a process group.

• hpmTstart and hpmTstop start and stop counting only for the thread
from which they are called.

On Linux and Blue Gene the first flavor of start and stop routines can not
be properly implemented, because the parent has no access to the counting
environment of the child before this child has ended. Therefore the function-
ality of hpmStart/hpmStop is disabled on Linux and Blue Gene. The calls
to hpmStart/hpmStop are folded into calls to hpmTstart/hpmTstop. As a
result, they are identical and can be freely mixed on Linux and Blue Gene.
This is, however, not advisable to do, as an instrumentation like this would
not port to AIX.

32

3.6 Inclusive and Exclusive Values

3.6.1 What are Exclusive Values ?

For a motivation of the term ”exclusive values” please look at sub section
3.1 Quick Start above. This program snippet provides an example of two
properly nested instrumentation sections. For section 1 we can consider
the exclusive time and and exclusive counter values. By that we mean the
difference of the values for section 1 and section 2. The original values for
section 1 would be called inclusive values for matter of distinction. The terms
inclusive and exclusive for the embracing instrumentation section are chosen
to indicate whether counter values and times for the contained sections are
included or excluded.

Of course the extra computation of exclusive values generates overhead which
is not always wanted. Therefore the computation of exclusive values is only
carried out if the environment variable HPM EXCLUSIVE VALUES is set
to Y[...], y[...] or 1 or if the HPM ONLY EXCLUSIVE parameter is used as
outlined in the following section.

The exact definition of “exclusive” is based on parent-child relations among
the instrumented sections. Roughly spoken, the exclusive value for the parent
is derived from the inclusive value of the parent reduced by the inclusive value
of all children. In previous versions of HPM, instrumented sections had to
be properly nested. This generated a natural parent-child relation. Since
the children didn’t overlap (if there was more than one child anyway), the
exclusive duration was naturally defined to be the inclusive duration of the
parent minus the sum of the inclusive durations of all children.

In this version of HPM, instrumented sections need not be to be properly
nested, but can overlap in arbitrary fashion. Unfortunately, this destroys
(or at least obscures) the natural parent-child relations among instrumented
sections and complicates the definition of exclusive values.

3.6.2 Parent-Child Relations

HPM provides an automatic search for parents, which is supposed to closely
mimic the behavior for strictly nested instrumented regions. It roughly fol-
lows the way that the previous version of HPM was going. For strictly nested
instrumented sections, the call to hpmStart or hpmTstart for the parent has

33

to occur prior to the corresponding call for the child. In a multi-threaded
environment, however, this causes problems, if the children are executed on
different threads. In a kind of race condition, a child may mistake his brother
for his father. This generates weird parent child relations, which change with
every execution of the program. Actually, the previous version of HPM could
exhibit this behavior in certain circumstances. To avoid the race condition
safely, the search is restricted to calls from the own thread only, as only these
exhibit a race condition free call history. The parent found in this history is
the last call of the same kind (i.e. both were started with hpmStart or both
are started with hpmTstart or their corresponding FORTRAN equivalences)
that has not posted a matching hpmStop or hpmTstop meanwhile. If no
parent is found that matches these rules, the child is declared an orphan. As
a consequence, automatic parent child relations are never established across
different threads.

There may be situations where the automatic parent child relations prove
unsatisfactory. To help this matter, new calls in the HPM API have been
introduced to enable the user to establish the relations of his choice. These
functions are hpmStartx and hpmTstartx and their FORTRAN equivalents.
The additional ”x” in the function name could be interpreted as ”extended”
or ”explicit”. The first two parameters of this function are the instrumented
section ID and the ID of the parent instrumented section.

The user has the following choices for the parent ID.

HPM AUTO PARENT This triggers the automatic search and is equiv-
alent the classical start routines hpmStart and hpmTstart. Indeed
the classical routines are implemented through calls to hpmStartx and
hpmTstartx with parent ID specified as HPM AUTO PARENT.

HPM ONLY EXCLUSIVE This is essentially the same as the previous
HPM AUTO PARENT, but sets the exclusive flag to TRUE on this
instance only. The environment variable HPM EXCLUSIVE VALUES
sets this flag globally for all instrumented sections.

HPM NO PARENT This suppresses any parent child relations.

an integer This has to point to an instrumented section with the following
restrictions.

• It has to exist when the call to hpmStartx or hpmTstartx is made.

34

• It has to be of the same kind (i.e. both were started with hpm-
Start or both are started with hpmTstart or their corresponding
FORTRAN equivalences)

Otherwise HPM will exit with an error message like the following.

hpmcount ERROR - Illegal instance id specified

In the very last consequence, the user is responsible for establishing meaning-
ful parent child relations. The good news is that these parent child relations
only affect the computation of exclusive values. In the worst case, these are
just bogus, but this wouldn’t effect any other result.

3.6.3 Handling of Overlap Issues

As the user can establish almost arbitrary parent child relations, the def-
inition of the explicit duration or explicit counter values is far from being
obvious.

Each instrumented section can be represented by the corresponding subset of
the time line. Actually this subset is a finite union of intervals with the left or
lower boundaries marked by calls to hpmStart[x]/hpmTstart[x], the right or
upper boundaries are marked by calls to hpmStop/hpmTstop. The duration
is just the accumulated length of this union of intervals. The counter values
are the number of those events that occur within this subset of time.

Basically, the exclusive times and values are the times and values, when no
child has a concurrent instrumented section. Hence the main step in defining
the meaning of exclusive values is defining the subset of the time line to which
they are associated. This is done in several steps.

• Represent the parent and every child by the corresponding subset of
the time line (henceforth called the parent set and the child sets).

• Take the union of the child sets.

• Reduce the parent set by the portion that is overlapping with this
union.

• Using set theoretic terms, we take the difference of the parent set with
the union of the child sets.

35

The exclusive duration is just the accumulated length of the resulting union
of intervals. The exclusive counter values are the number of those events
that occur within this subset of time.

3.6.4 Computation of Exclusive Values for Derived Metrics

The task of computing exclusive values for derived metrics may sound com-
plicated at first. But it is actually very simple, given the work already done
in the previous subsections. The basic observation is that we are given a
subset of the time line that is associated to the notion of “exclusive values”.
There is no need to care about the way how this set was constructed; just
assume the interval boundaries are marked by calls to hpmStart and hpm-
Stop for a new “virtual” instrumented section. In this case it is obvious how
to compute the derived metrics - just apply the usual definitions !

3.7 Function Reference

The subroutines provided by libhpm have no return value. In case of some
error the global integer variable hpm error count is updated. The user is
encouraged to check this variable to have his application gracefully exit from
HPM errors. As it is difficult for FORTRAN programs to accesss C global
variables, there is a logical function

f_hpm_error()

which returns TRUE if an error occurred inside libhpm and FALSE otherwise.
For parallel FORTRAN programs the user is encouraged to implement a
subroutine like this.

C---------------------- Error Check --------------------

SUBROUTINE F_HPM_ERRCHK

INTEGER ierr

LOGICAL f_hpm_error

EXTERNAL f_hpm_error

IF (f_hpm_error()) THEN

36

CALL MPI_Abort(MPI_COMM_WORLD, 4, ierr)

END IF

RETURN

END

A parallel C version would look like this.

#ifdef HPM

#include "libhpm.h"

#define hpm_errchk if (hpm_error_count) MPI_Abort(MPI_COMM_WORLD,4)

#endif /* HPM */

The API provided by libhpm is now descibed in detail.

hpmInit(taskID, progName)

f_hpminit(taskID, progName)

• taskID is an integer value. It is now depreciated. In earlier version this
was indicating the node ID. It is no longer used and can be set to any
value.

• progName is a string with the program name. If the environment Vari-
able HPM OUTPUT NAME is not set, this string will be used as a
default value for the output name.

hpmStart(instID, label)

f_hpmstart(instID, label)

• instID is the instrumented section ID. It should be > 0 and ≤ 1000.

• To run a program with more than 1000 instrumented sections, the user
should set the environment variable HPM NUM INST PTS. In this
case, instID should be less than the value set for HPM NUM INST PTS.

• Label is a string containing a label, which is displayed by PeekPerf.

hpmStartx(instID, par_ID, label)

f_hpmstartx(instID, par_ID, label)

37

• instID is the instrumented section ID. It should be > 0 and ≤ 1000.

• To run a program with more than 1000 instrumented sections, the user
should set the environment variable HPM NUM INST PTS. In this
case, instID should be less than the value set for HPM NUM INST PTS.

• par ID is the instrumentation ID of the parent section (see section 3.6
Inclusive and Exclusive Values)

• Label is a string containing a label, which is displayed by PeekPerf.

hpmStop(instID)

f_hpmstop(instID)

• For each call to hpmStart, there should be a corresponding call to
hpmStop with matching instID.

• If not provided explicitely, in implicit call to hpmStop will be made at
hpmTerminate.

hpmTstart(instID, label)

f_hpmtstart(instID, label)

hpmTstartx(instID, par_ID, label)

f_hpmtstartx(instID, par_ID, label)

hpmTstop(instID)

f_hpmtstop(instID)

• In order to instrument threaded applications, one should use the pair
hpmTstart and hpmTstop to start and stop the counters independently
on each thread. Notice that two distinct threads using the same instID
will generate an error. See the Section 3.11 on multi-threaded issues
for examples.

hpmGetTimeAndCounters(numCounters, time, values)

f_GetTimeAndCounters (numCounters, time, values)

hpmGetCounters(values)

f_hpmGetCounters (values)

38

• These functions have been temporarily disabled in this release. They
will be reintroduced in the next release.

hpmTerminate(taskID)

f_hpmterminate(taskID)

• All active instrumented code sections will receive an hpmStop

• This function will generate the output.

• If the program exits without calling hpmTerminate, no performance
information will be generated.

3.8 Measurement Overhead

As in previous versions of HPM, the instrumentation overhead is caught by
calls to the wall clock timer at entry and exit of calls to hpmStart[x], hpm-
Stop, hpmTstart[x], hpmTstop. The previous version tried to eliminate (or
hide) the overhead from the measured results. The current version just prints
the timing of the accumulated overhead (separate for every instrumented sec-
tion) in the ASCII output (*.hpm file).

The idea is to let the user decide what to do with this information.

• If the overhead is several orders of magnitude smaller than the total
duration of the instrumented section, he can safely ignore the overhead
timing.

• If the overhead is in the same order as the total duration of the instru-
mented section, he may wonder whether to trust the results anyway.

• If the overhead is within 20% of the measured wall clock time, a warning
is printed to the ASCII output file.

To make the use of libhpm thread safe, mutexes are set around each call to
hpmStart[x], hpmStop, hpmTstart[x], hpmTstop, which adds to the mea-
surement overhead. If the user is running on one thread only, the set-
ting of the mutexes can be suppressed by setting the environment variable
HPM USE PTHREAD MUTEX to ’0’, ’no’ or ’NO’.

39

3.9 Output

If no environment variable is specified, libhpm will write two files. These
contain (at least roughly) the same information, but use different formats.

• The file name can be specified via environment variable
HPM OUTPUT NAME=<name>.

• If HPM OUTPUT NAME is not set, the string “progName” as spec-
ified in the second parameter to hpmInit is taken as default (see sub
section 3.7 Function Reference above).

• The name <name>is actually expanded into three different file names.

<name>.hpm is the file name for ASCII output — which is basically
a one-to-one copy of the screen output.

<name>.viz is the filename for XML output.

<name>.csv is the filename for output as comma separated value
file. This is not yet implemented in the current release.

• Which of these output files are generated is governed by three additional
environment variables. If none of those are set, the ASCII and the XML
output is generated. If at least one is set, the following rules apply.

HPM ASC OUTPUT If set to ’Y[...]’, ’y[...]’ or ’1’, triggers the
ASCII output.

HPM VIZ OUTPUT If set to ’Y[...]’, ’y[...]’ or ’1’, triggers the
XML output.

HPM CSV OUTPUT If set to ’Y[...]’, ’y[...]’ or ’1’, triggers the csv
output. This is not yet implemented in the current release.

• The filename can be made unique by setting the environment variable
HPM UNIQUE FILE NAME=1. This triggers the following changes.

– A string

<hostname><process_id>_<date>_<time>

is inserted before the last ’.’ in the file name.

– If the file name has no ’.’, the string is appended to the file name.

– If the only occurrence of ’.’ is the first character of the file name,
the string is prepended, but the leading ’ ’ is skipped.

40

– If the host name contains ’.’ (”long form”), only the portion
preceding the first ’.’ is taken. In case a batch queuing system
is used, the host name is taken from the execution host, not the
submitting host.

– Similarly for MPI parallel programs, the host name is taken from
the node where the MPI task is running. The addition of the
process id enforces different file names for MPI tasks running on
the same node.

– If used for an MPI parallel program, hpmcount tries to extract the
MPI task id (or MPI rank with respect to MPI COMM WORLD)
from the MPI environment. If successful, the process id is replaced
with the MPI task id.

– The date is given as dd.mm.yyyy, the time is given by hh.mm.ss
in 24h format using the local time zone.

• By default there is no output to stdout. This can be changed via setting
the environment variable HPM STDOUT to either ’1’, ’yes’ or ’YES’.
In this case, the contents of the ASCII output file are copied to stdout.

• If the environment variable HPM PRINT FORMULA is set to either
’1’, ’yes’ or ’YES’, the ASCII output of each derived metric is followed
by the formula used to compute this derived metric. For details on
derived metrics see section 3.4.

3.10 Examples of Use

The following examples show how to instrument a code with calls to libhpm.
For details on how to compile and link an application with Libhpm please go
to section 3.13 on compiling and linking.

3.10.1 C and C++

declaration:

#include "libhpm.h"

use:

hpmInit(0, "my program");

if (hpm_error_count) exit(4);

hpmStart(1, "outer call");

41

if (hpm_error_count) exit(4);

do_work();

hpmStart(2, "computing meaning of life");

if (hpm_error_count) exit(4);

do_more_work();

hpmStop(2);

if (hpm_error_count) exit(4);

hpmStop(1);

if (hpm_error_count) exit(4);

hpmTerminate(taskID);

if (hpm_error_count) exit(4);

The syntax for C and C++ is the same. libhpm routines are declared as
having extern ”C” linkage in C++.

3.10.2 Fortran

Fortran programs should call the functions with prefix ?f ?. Also, notice that
the following declaration is required on all source files that have instrumen-
tation calls.

declaration:

#include "f_hpm.h"

use:

call f_hpminit(0, "my_program")

if (hpm_error_count > 0) call exit(4)

call f_hpmstart(1, "Do Loop")

if (hpm_error_count > 0) call exit(4)

do <some_loop_header>

call do_work()

call f_hpmstart(5, "computing meaning of life");

if (hpm_error_count > 0) call exit(4)

call do_more_work();

call f_hpmstop(5);

if (hpm_error_count > 0) call exit(4)

end do

call f_hpmstop(1)

if (hpm_error_count > 0) call exit(4)

call f_hpmterminate(taskID)

42

if (hpm_error_count > 0) call exit(4)

3.11 Multi-Threaded Program Instrumentation Issues

When placing instrumentation inside of parallel regions, one should use differ-
ent ID numbers for each thread, as shown in the following Fortran example:

!$OMP PARALLEL

!$OMP&PRIVATE (instID)

instID = 30+omp_get_thread_num()

call f_hpmtstart(instID, "computing meaning of life")

!$OMP DO

do ...

do_work()

end do

call f_hpmtstop(instID)

!$OMP END PARALLEL

If two threads are using the same ID numbers for call to hpmTstart or hpmT-
stop, libhpm will exit with the following error message.

hpmcount ERROR - Instance ID on wrong thread

There is a subtlety for currently only AIX, which supports true hpmStart/
hpmStop routines. See the subsection 3.5 Inheritance for an explanation of
the difference between hpmStart/hpmStop and hpmTstart/hpmTstop. It is
legal to use hpmStart/hpmStop inside of a parallel region, but this use is
strongly discouraged. To understand this, one has to recall that the different
threads of a workgroup run totally unsynchronized. A call to hpmStart would
not only record the values of the calling thread, but also of all other threads
in the same process group. Only the calling thread is at a defined point in the
program; the other threads might be at any other statement in the parallel
region. So basically, numbers of apples are added to numbers of pears, and
the result is almost ever some bogus number. Thus, hpmTstart/hpmTstop
should be used inside parallel regions.

Outside of the parallel region (in particular embracing a parallel section), it
can well make sense to use hpmStart/hpmStop. In a parallel section, several

43

threads are spawned to take over part of the workload. hpmStart/hpmStop
would catch the activity of all spawned threads, hpmTstart/hpmTstop only
considers the thread that is active before and after the parallel section.

3.12 Considerations for MPI Parallel Programs

3.12.1 General Considerations

libhpm is inherently sequential, looking only at the hardware performance
counters of a single process (and its children, as explained in section 3.5
Inheritance). When started with “poe” or “mpirun”, each MPI task is doing
its own hardware performance counting and these instances are completely
ignorant of each other — unless additional action is taken as described in the
following sub sections. Consequently, each instance is writing its own output.
If the environment variable HPM OUTPUT NAME is used, each instance is
using the same file name, which results in writing into the same file, if a
parallel file system is used. Of course, this can be (and should be) prevented
by making the file names unique through the HPM UNIQUE FILE NAME
environment variable. Still it might be an unwanted side effect to have that
many output files.

For this reason the the environment variable HPM AGGREGATE triggers
some aggregation before (possibly) restricting the output to a subset of MPI
tasks. This formulation is deliberately vague, because there can be many
ways to aggregate hardware performance counter information across MPI
tasks. One way is to take averages, but maximum or minimum values could
be also thought of. The situation is further complicated by allowing to run
different groups on different MPI tasks. On architectures that allow for
multiplexing (as described in section 3.3 Multiplexing), some tasks could use
multiplexing, others may not. Of course averages, maximum and minimum
values should only be taken on groups which are alike.

Therefore the environment variable HPM AGGREGATE take a value, which
is the name of a plug-in that defines the aggregation strategy. Each plug-in
is a shared object file containing two functions called distributor and aggre-
gator.

On Blue Gene/L there are no shared objects. Therefore the plug-ins are
simple object files. The HPM AGGREGATE environment variable is not
used on Blue Gene/L, but the plug-ins are statically linked with the library.

44

3.12.2 Distributors

The motivating example for the distributor function is allowing a differ-
ent hardware counter group on each MPI task. Therefore, the distribu-
tor is a subroutine that determines the MPI task id (or MPI rank with
respect to MPI COMM WORLD) from the MPI environment for the cur-
rent process, and (re)sets environment variables depending on this informa-
tion. The environment variable may be any environment variable, not just
HPM EVENT SET, which motivated this function.

Consequently, the distributor is called before any environment variable is
evaluated by HPM. The settings of the evironment variables done in the
distributor take precedence over global settings.

Of course, the aggregator has to adapt to the HPM group settings done by
the distributor. This is why distributors and aggregators always come in
pairs. Each plug-in is containing just one such pair.

3.12.3 Aggregators

The motivating example is the aggregation of the hardware counter data
across the MPI tasks. In the simplest case this could be an average of the
corresponding values. Hence this function is called

• after the hardware counter data have been gathered,

• before the derived metrics are computed.

• before these data are printed,

In a generalized view, the aggregator is taking the raw results and rearranges
them for output.

Also, depending on the information of the MPI task id (or MPI rank with
respect to MPI COMM WORLD) the aggregator sets (or doesn’t set) a flag
to mark the current MPI task for HPM printing.

3.12.4 Plug-ins shipped with the Tool Kit

The following plug-ins are shipped with the toolkit. They can be found in

45

$(IHPCT_BASE)/lib or $(IHPCT_BASE)/lib64

mirror.so is the plug-in that is called when no plug-in is requested. The
aggregator is mirroring the raw hardware counter data in a one-to-one
fashion into the output function. Hence this name. It is also flagging
each MPI task as printing task. The corresponding distributor is a void
function. This plug-in doesn’t use MPI and also works in a non-MPI
context.

loc merge.so does a local merge on each MPI task separately. It is identical
to the mirror.so plug-in except for those MPI tasks that change the
hardware counter groups in the course of the measurement (e.g. by
multi-plexing). The different counter data, which are collected for only
part of the measuring interval, are proportionally extended to the whole
interval and joined into one big group that is entering derived metrics
computation. This way, more derived metrics can be determined at
the risk of computing garbage. The user is responsible for using this
plug-in only when it makes sense to use it. It is also flagging each MPI
task as printing task. The corresponding distributor is a void function.
This plug-in doesn’t use MPI and also works in a non-MPI context.

single.so does the same as mirror.so, but only on MPI task 0. The output
on all other tasks is discarded. This plug-in uses MPI functions and
can’t be used in a sequential context.

average.so is a plug-in for taking averages across MPI tasks. The distrib-
utor is reading the environment variable HPM EVENT SET (which
is supposed to be a comma separated list of group numbers) and dis-
tributes these group numbers in a round robin fashion to the MPI
tasks. The aggregator is first building a MPI communicator of all tasks
with equal hardware performance counting scenario. The communica-
tor groups may be different from the original round robin distribution.
This may happen if the conting group has been changed on some of
the MPI tasks after the first setting by the distributor. Next the ag-
gregator is taking the average across the subgroups formed by this
communicator. Finally it is flagging the MPI rank 0 in each group as
printing host. This plug-in uses MPI functions and can’t be used in a
sequential context.

46

3.12.5 User defined Plug-ins

There can be no doubt that this set of plug-ins can only be a first starter
kit and many more might be desirable. Rather than taking the average one
could think of taking maximum or minimum. There is also the possibility
of taking kind of a “history merge.so” by blending in results from previous
measurements. Chances are that however big the list of shipped plug-ins may
be, the one just needed is missing from the set (“Murphy’s law of HPM plug-
ins”). The only viable solution comes with disclosing the interface between
plug-in and tool and allowing for user defined plug-ins.

The easiest way to enable users to write their own plug-ins is by providing
examples. Hence the plug-ins described above are provided in source code
together with the Makefile that was used to generate the shared objects files.
These files can be found in the following place.

$(IHPCT_BASE)/examples/plugins

3.12.6 Detailed Interface Description

Each distributor and aggregator is a function returning an integer which is
0 on success and ! = 0 on error. In most cases the errors occur when calling
a system call like malloc(), which sets the errno variable. If the distributor
or aggregator returns the value of errno as return code, the calling HPM
tool sees to an expansion of this errno code into a readable error message. If
returning the errno is not viable, the function should return a negative value.

The function prototypes are defined in the following file.

$(IHPCT_BASE)/include/hpm_agg.h

This is a very short file with the following contents.

#include "hpm_data.h"

int distributor(void);

int aggregator(int num_in, hpm_event_vector in,

int *num_out, hpm_event_vector *out,

int *is_print_task);

47

The distributor has no parameters and is only required to (re)set environment
variables (via setenv()).

The aggregator takes the current hpm values on each task as an input vector
in and returns the aggregated values on the output vector out on selected
or all MPI tasks. To have utmost flexibility, the aggregator is responsible to
allocate the memory needed to hold the output vector out. The definition of
the data types used for in and out are provided in the following file.

$(IHPCT_BASE)/include/hpm_data.h

Finally the aggregator is supposed to set (or unset) a flag to mark the current
MPI task for HPM printing.

Form the above definitions it is apparent that the interface is defined in
C-Language. While it is in principle possible to use another language for
programming plug-ins, the user is responsible for using the same memory
layout for the input and output variables. There is no explicit FORTRAN
interface provided.

The hpm event vector in is a vector or list of num in entries of type hpm data

item. The latter is a struct containing members that describe the definition
and the results of a single hardware performance counting task.

/* NAME INDEX */

#define HPM_NTIM 8

#define HPM_TIME_WALLCLOCK 0

#define HPM_TIME_CYCLE 1

#define HPM_TIME_USER 2

#define HPM_TIME_SYSTEM 3

#define HPM_TIME_START 4

#define HPM_TIME_STOP 5

#define HPM_TIME_OVERHEAD 6

#define HPM_TIME_INIT 7

typedef struct {

int num_data;

hpm_event_info *data;

double times[HPM_NTIM];

48

int is_mplex_cont;

int is_rusage;

int mpi_task_id;

int instr_id;

int count;

int is_exclusive;

int xml_element_id;

char *description;

char *xml_descr;

} hpm_data_item;

typedef hpm_data_item *hpm_event_vector;

• Counting the events from a certain HPM group on one MPI task is
represented by a single element of type hpm data item.

• If multiplexing is used, the results span several consecutive elements,
each dedicated to one HPM group that take part in the multiplex set-
ting. On all but the first element the member is mplex cont is set to
TRUE to indicate that these elements are continuations of the first
element belonging to the same multiplex setup.

• If HPM groups are changed during the measurement, the results for dif-
ferent groups are recorded in different vector elements, but no is mplex

cont flag is set. This way results obtained via multiplexing can be dis-
tinguished from results obtained by ordinary group change.

• If several instrumented sections are used, each instrumented code sec-
tion will use separate elements of type hpm data item to record the
results. Each of these will have the member instr id set with the first ar-
gument of hpmStart and the logical member is exclusive set to TRUE

or FALSE depending on whether the element hold inclusive or ex-
clusive counter results (see section 3.6 Inclusive and Exclusive Values
for details). Then all these different elements are concatenated into a
single vector.

• Finally, the data from a call to getrusage() is prepended to this vector.
So the rusage data form the vector element with index 0. This vector
element is the only element with struct member is rusage set to TRUE

to distinguish it from ordinary hardware performance counter data.

49

The output vector is of the same format. Each vector element enters the
derived metrics computation separately (unless is rusage == TRUE). Then
all vector elements (and the corresponding derived metrics) are printed in
the order given by the vector out. The output of each vector element will be
preceded by the string given in member description (which may include line
feeds as appropriate). The XML output will be marked with the text given
in xml descr.

This way the input vector in is providing a complete picture of what has been
measured on each MPI task. The output vector out is allowing complete
control on what is printed on which MPI task in what order.

3.12.7 Getting the plug-ins to work

The plug-ins have been compiled with the following Makefile

$(IHPCT_BASE)/examples/plugins/Makefile

using this command.

<g>make ARCH=<appropriate_archtitecture>

The include files for the various architectures are provided in subdirectory
make. The user is asked to note a couple of subtleties.

• The Makefile distinguishes “sequential” (specified in PLUGIN SRC)
and “parallel” plug-ins (specified in PLUGIN PAR SRC). The latter
are compiled and linked with the MPI wrapper script for the compiler/
linker. Unlike a static library, generation of a shared object requires
linking, not just compilation.

• On BG/L there are no shared objects, so ordinary object files are gen-
erated. On BG/L and BG/P just everything is parallel.

• If the MPI software stack requires the parallel applications to be linked
with a special start-up code (like poe remote main() for IBM MPI on
AIX), the shared object has to carry this start-up code. hpmcount is
a sequential application. Therefore the start-up code has to be loaded
and activated when the plug-in is loaded at run time. This turns the

50

sequential application hpmcount into a parallel application “on the fly”.
This sounds complicated but works pretty seamlessly, at least for IBM
MPI in user space protocol and MPICH and its variants. No further
user action is required to make this work.

• There are, however, some restrictions to be observed when writing plug-
in code. The MPI standard document disallows calling MPI Init()
twice on the same process. It appears that this is indeed not supported
on the majority of MPI software stacks, not even if an MPI Finalize()
is called between the two invocations of MPI Init().

• The distributor is called by hpmInit(). If it would contain MPI calls,
this would enforce to have MPI Init() prior to hpmInit(). To lift this
restriction, the distributor must not call any MPI function. If the
distributor is supposed to work with hpmcount as well, this restriction
is required as well (see 2.7.7 for details). The MPI task id should be
extracted by inspecting environment variables that have been set by
the MPI software stack.

• The aggregator, however, usually can’t avoid calling MPI functions.
Before calling MPI Init(), it has to check whether the instrumented
application has already done so. If the instrumented application is
an MPI application, it cannot be called after MPI Finalize(). The
aggregator is called by hpmTerminate(). Hence hpmTerminate() has
to be called between the calls to MPI Init() and MPI Finalize().

• libhpm uses a call to dlopen() to access the plug-in and makes use of
its functions. There is no dlopen() on Blue Gene/L, so plug-ins are
statically linked to the application. On Blue Gene/P, both ways to
access the plug-ins can be used.

3.13 Compiling and Linking

3.13.1 Dynamic Linking

libhpm inspects the value of HPM AGGREGATE at run time and links to the
appropriate distributor and aggregator (see section 3.12 for details) via a
call to dlopen at run time. This in general requires dynamic linking of the
application. In many cases this is transparent to the user.

51

The easiest way to find the right compile and link options is to inspect the
examples.

. /usr/local/ihpct_2.2/env_sh

replace the above PATH with the actual location

where HPCT is installed.

cp -r $IHPCT_BASE/examples/hpm .

cd hpm

ls make

gmake ARCH=power_aix swim_mpi redBlackSOR

replace power_aix with the actual architecture

you are compiling on.

inspect the sub directory make for getting

the right value for ARCH.

On AIX the following compile and link statement can be observed from the
above gmake command. For better readability, the echoes from gmake are
splitted over several lines. Also PATH names have been replaced with the
environment variable $IHPCT BASE wherever appropriate.

mpxlf_r -c -O3 -q64 -g -I$IHPCT_BASE/include \

-qsuffix=cpp=f -qrealsize=8 -WF,-DHPM swim_mpi.f

mpxlf_r -O3 swim_mpi.o -o swim_mpi -q64 \

-lxlf90 -L$IHPCT_BASE/lib64 -lhpm -llicense \

-lpmapi -lm

xlc_r -O3 -DHPM -q64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT -c redBlackSOR.c

xlc_r -O3 -DHPM -q64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT -c relax.c

xlc_r -O3 -q64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT redBlackSOR.o relax.o \

-o redBlackSOR -q64 -lxlf90 -L$IHPCT_BASE/lib64 \

-lhpm -llicense -lpmapi -lm

On Linux, the same gmake command leads to the following statements.
Please note that compared to the statements above, there is no -lpmapi

(or rather -lperfctr). This is due to the different way how the GNU loader
handles unresolved external references in subsequent libraries.

52

mpfort -c -O3 -q64 -g -I$IHPCT_BASE/include \

-qsuffix=cpp=f -qrealsize=8 -WF,-DHPM swim_mpi.f

mpfort -O3 swim_mpi.o -o swim_mpi -q64 \

-L$IHPCT_BASE/lib64 -lhpm -llicense

xlc_r -O3 -DHPM -q64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT -c redBlackSOR.c

xlc_r -O3 -DHPM -q64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT -c relax.c

xlc_r -O3 -q64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT redBlackSOR.o relax.o \

-o redBlackSOR -q64 -L$IHPCT_BASE/lib64 -lhpm -llicense

Finally, on BlueGene/P, the following statements can be observed. Please
note the -dynamic in the linker statement. This is necessary, because the
default linkage is static on BlueGene.

/bgsys/drivers/ppcfloor/comm/bin/mpif90 -c \

-O3 -g -I$IHPCT_BASE/include \

-x f77-cpp-input -std=gnu -Wp,-DHPM swim_mpi.f

/bgsys/drivers/ppcfloor/comm/bin/mpif90 -O3 \

swim_mpi.o -o swim_mpi -dynamic \

-L$IHPCT_BASE/lib -llicense -lhpm

/bgsys/drivers/ppcfloor/comm/bin/mpicc -O3 -DHPM -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

-c redBlackSOR.c

/bgsys/drivers/ppcfloor/comm/bin/mpicc -O3 -DHPM -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

-c relax.c

/bgsys/drivers/ppcfloor/comm/bin/mpicc -O3 -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

redBlackSOR.o relax.o -o redBlackSOR -dynamic \

-L$IHPCT_BASE/lib -llicense -lhpm

Please note that on BlueGene/P, the targets involving OpenMP do not com-
pile with the options given in the example Makefile.

If mpicc is being replaced by mpixlc r, the -dynamic has to be replaced by
-qnostaticlink. There is no corresponding option for mpixlf90 r.

53

/bgsys/drivers/ppcfloor/comm/bin/mpixlc_r -O3 -DHPM -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

-c redBlackSOR.c

/bgsys/drivers/ppcfloor/comm/bin/mpixlc_r -O3 -DHPM -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

-c relax.c

/bgsys/drivers/ppcfloor/comm/bin/mpixlc_r -O3 -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

redBlackSOR.o relax.o -o redBlackSOR -qnostaticlink \

-L$IHPCT_BASE/lib -llicense -lhpm

Also, please note that on BlueGene/P, environment variables have to be
passed to the MPI tasks. This is demonstrated in the following example.

export LD_LIBRARY_PATH=\

$IHPCT_BASE/lib:/bgsys/drivers/ppcfloor/runtime/SPI

mpirun -np 8 -mode VN -partition r000n120-c16i1 \

-env BG_MAXALIGNEXP=1 \

-env LD_LIBRARY_PATH=$LD_LIBRARY_PATH \

-env HPM_UNIQUE_FILE_NAME=yes \

-env HPM_AGGREGATE=average.so ./swim_mpi

3.13.2 Static Linking

If, for some reason, dynamic linking is not an option, there is also a “plan b”.
For instance, the current version 8.4.1 of TotalView on BlueGene/P does not
support dynamic linking. Also the targets involving OpenMP in the above
example appear to require a different linkage.

To do this, the call to dlopen (as well as the other dlxxx calls) are linked to a
fake library. This fake library turns the aggregator and distributor into unre-
solved external references. Hence the plugin needs to be statically linked to
the application as well. As a result, the environment variable HPM AGGREGATE

will be disregarded.

This is easiest and most needed on BlueGene/P. Here the following link
statements will do. The second example is a serial program, so taking the
average plugin does not make sense - although is does not hurt, as on BG/P,
everything is a parallel program.

54

/bgsys/drivers/ppcfloor/comm/bin/mpif90 -c \

-O3 -g -I$IHPCT_BASE/include \

-x f77-cpp-input -std=gnu -Wp,-DHPM swim_mpi.f

/bgsys/drivers/ppcfloor/comm/bin/mpif90 -O3 \

swim_mpi.o -o swim_mpi \

-L$IHPCT_BASE/lib -lhpm -llicense \

$IHPCT_BASE/lib/fake_dlfcn.o \

$IHPCT_BASE/lib/average.o

/bgsys/drivers/ppcfloor/comm/bin/mpicc -O3 -DHPM -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

-c redBlackSOR.c

/bgsys/drivers/ppcfloor/comm/bin/mpicc -O3 -DHPM -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

-c relax.c

/bgsys/drivers/ppcfloor/comm/bin/mpicc -O3 -g \

-I$IHPCT_BASE/include -DHPM -DDYNAMIC -DPRINT \

redBlackSOR.o relax.o -o redBlackSOR \

-L$IHPCT_BASE/lib -lhpm -llicense -lm \

$IHPCT_BASE/lib/fake_dlfcn.o \

$IHPCT_BASE/lib/mirror.o

On AIX, the commands look just accordingly. The only changes are that
libhpm and liblicense are specified explicitely in static form to force the
linker to resolve them by static linking. MPI is still linked dynamically.

mpxlf_r -c -O3 -q64 -g -I$IHPCT_BASE/include \

-qsuffix=cpp=f -qrealsize=8 -WF,-DHPM swim_mpi.f

mpxlf_r -O3 swim_mpi.o -o swim_mpi -q64 \

$IHPCT_BASE/lib64/libhpm.a \

$IHPCT_BASE/lib64/fake_dlfcn.o \

$IHPCT_BASE/lib64/average.o \

$IHPCT_BASE/lib64/liblicense.a \

-lpmapi -lm

xlc_r -O3 -DHPM -q64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT -c redBlackSOR.c

xlc_r -O3 -DHPM -q64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT -c relax.c

xlc_r -O3 -q64 -g -I$IHPCT_BASE/include \

55

-DHPM -DDYNAMIC -DPRINT redBlackSOR.o relax.o \

-o redBlackSOR -q64 -lxlf90 \

$IHPCT_BASE/lib64/libhpm.a \

$IHPCT_BASE/lib64/fake_dlfcn.o \

$IHPCT_BASE/lib64/mirror.o \

$IHPCT_BASE/lib64/liblicense.a \

-lpmapi -lm

On linux, disabling the dlopen and dlsym calls generates conflicts with other
libraries that make use of these functions, like libxlfmath.so. Unfortunately,
this rules out the xl-compilers for this exercise. The GNU compilers, however,
generate executables that work correctly.

export MP_COMPILER=gfortran

mpfort -c -O3 -m64 -g -I$IHPCT_BASE/include \

-x f77-cpp-input -std=gnu -Wp,-DHPM swim_mpi.f

mpfort -O3 swim_mpi.o -o swim_mpi -m64 \

$IHPCT_BASE/lib64/libhpm.a \

$IHPCT_BASE/lib64/fake_dlfcn.o \

$IHPCT_BASE/lib64/average.o \

$IHPCT_BASE/lib64/liblicense.a \

-L/opt/perfctr-2.7.20/64/lib -lperfctr

gcc -O3 -DHPM -m64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT -c redBlackSOR.c

gcc -O3 -DHPM -m64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT -c relax.c

gcc -O3 -m64 -g -I$IHPCT_BASE/include \

-DHPM -DDYNAMIC -DPRINT redBlackSOR.o relax.o \

-o redBlackSOR \

$IHPCT_BASE/lib64/libhpm.a \

$IHPCT_BASE/lib64/fake_dlfcn.o \

$IHPCT_BASE/lib64/mirror.o \

$IHPCT_BASE/lib64/liblicense.a \

-L/opt/perfctr-2.7.20/64/lib -lperfctr -lm

56

4 hpmstat

4.1 Quick Start

hpmstat is a simple system wide monitor based on hardware performance
counters. For most of the functionality of hpmstat, root priviliges are re-
quired. The usage is very similar to that of the vmstat command. For a
start the (root) user simply types the following.

hpmstat

As a result, hpmstat lists various performance information on the screen
(i.e.stdout output). In particular it prints resource utilization statistics, hard-
ware performance counter information and derived hardware metrics.

The resource usage statistics is directly taken from a call to getrusage(). For
more information on the resource utilization statistics, please refer to the
getrusage man pages. In particular, on Linux the man page for getrusage()
states that not all fields are meaningful under Linux. The corresponding
lines in hpmstat output have the value ”n/a”.

4.2 Usage

Detailed descriptions of selected options

-o <name> copies output to file <name>.

• For parallel programs the user is advised to have a different name
for each MPI task (using e.g. the -u flag below) or direct the file
to a non-shared file system.

-u make the file name <name>(specified via -o) unique.

• A string

<hostname><process_id>_<date>_<time>

57

is inserted before the last ’.’ in the file name.

• If the file name has no ’.’, the string is appended to the file name.

• If the only occurance of ’.’ is the first character of the file name,
the string is prepended, but the leading ’ ’ is skipped.

• If the hostname contains ’.’ (”long form”), only the portion pre-
ceding the first ’.’ is taken. In case a batch queuing system is used,
the hostname is taken from the execution host, not the submitting
host.

• Similarly for MPI parallel programs, the hostname is taken from
the node where the MPI task is running. The addition of the
process id enforces different file names for MPI tasks running on
the same node.

• The date is given as dd.mm.yyyy, the time is given by hh:mm.ss
in 24h format using the local time zone.

• The file name created that way contains a ’:’ to make the time
easily recognizable. Unfortunately, some Windows versions don’t
like ’:’ in file names. Please remember to rename the file before
transferring it to a Windows system.

• This flag is only active when the -o flag is used.

-n no hpmstat output in stdout when ”-o” flag is used.

• This flag is only active when the -o flag is used.

-x adds formulas for derived metrics

-g <group[,<group>, ...]> specify group number(s)

• for an explanation on groups see sections 2.3 on Events and Groups
and 2.4 on Multiplexing below.

-a <plug-in> aggregate counters using the plugin <plug-in>.

-l list groups

• for an explanation on groups see section 2.3 on Events and Groups
below.

-c list counters and events

• for an explanation on groups see section 2.3 on Events and Groups
below.

58

4.3 Events and Groups

The hardware performance counters information is the value of special CPU
registers that are incremented at certain events. The number of such registers
is different for each architecture.

Processor Architecture Number of performance
counter registers

PPC970 8
Power4 8
Power5 6

Power5+ 6
Power6 6
BG/L 52
BG/P 256

On both AIX and Linux, kernel extensions provide “counter virtualization”,
i.e. the user sees private counter values for his application. On a technical
side, the counting of the special CPU registers is frozen and the values are
saved whenever the application process is taken off the CPU and another
process gets scheduled. The counting is resumed when the user application
gets scheduled on the CPU.

The special CPU registers can count different events. On the Power CPUs
the are restrictions which registers can count what events. A call to “hpmstat
-c” will list all CPU counting registers and the events they can be monitoring.

Even more, there are lots of rules restricting the concurrent use of different
events. Each valid combination of assignments of events to hardware counting
registers is called a group. To make handling easier, a list of valid groups is
provided. A call to “hpmstat -l” will list all available groups and the events
they are monitoring. The -g option is provided to select a secific group to
be counted by hpmstat. If -g is not specified, a default group will be taken
according to the following table.

59

Processor Architecture Number of groups Default group

PPC970 41 23
Power4 64 60
Power5 148(140) 137

Power5+ 152 145
Power6 195 127
BG/L 16 0
BG/P 4 0

The number of groups for Power5 is 140 for AIX 5.2, and 148 for Linux and
AIX 5.3. The reason for this difference are different versions of bos.pmapi.The
last group (139) was changed and 8 new groups were appended. If HPM is
called with

hpmstat -g <a_new_group_number>

on AIX 5.2, it returns the following error message.

hpmstat ERROR - pm_set_program_mygroup:

pm_api : event group ID is invalid

60

5 Reference

5.1 List of Environment Variables

Environment variable Text reference

HPM AGGREGATE 2.7.1, 3.12.1
HPM ASC OUTPUT 2.2, 3.9
HPM DIV WEIGHT 2.5.2, 3.4.2
HPM EVENT SET 3.2
HPM EXCLUSIVE VALUES 3.6
HPM L25 LATENCY 2.5.3, 3.4.3
HPM L275 LATENCY 2.5.3, 3.4.3
HPM L2 LATENCY 2.5.3, 3.4.3
HPM L35 LATENCY 2.5.3, 3.4.3
HPM L3 LATENCY 2.5.3, 3.4.3
HPM MEM LATENCY 2.5.3, 3.4.3
HPM NUM INST PTS 3.7
HPM OUTPUT NAME 2.2, 3.9
HPM PRINT FORMULA 2.2, 3.9, 3.4
HPM SLICE DURATION 2.4, 3.3
HPM STDOUT 2.2, 3.9
HPM TLB LATENCY 2.5.3, 3.4.3
HPM UNIQUE FILE NAME 2.2, 3.9
HPM USE PTHREAD MUTEX 3.8
HPM VIZ OUTPUT 2.2, 3.9

5.2 Derived Metrics Description

Utilization rate

100.0 * user_time / wall_clock_time

Total FP load and store operations

fp_tot_ls = (PM_LSU_LDF + PM_FPU_STF) * 0.000001

MIPS

PM_INST_CMPL * 0.000001 / wall_clock_time

61

Instructions per cycle

(double)PM_INST_CMPL / PM_CYC

Instructions per run cycle

(double)PM_INST_CMPL / PM_RUN_CYC

Instructions per load/store

(double)PM_INST_CMPL/(PM_LD_REF_L1 + PM_ST_REF_L1)

% Instructions dispatched that completed

100.0 * PM_INST_CMPL / PM_INST_DISP

Fixed point operations per Cycle

(double)PM_FXU_FIN / PM_CYC

Fixed point operations per load/stores

(double)PM_INST_CMPL/(PM_LD_REF_L1 + PM_ST_REF_L1)

Branches mispredicted percentage

100.0* (PM_BR_MPRED_CR + PM_BR_MPRED_TA) / PM_BR_ISSUED

number of loads per load miss

(double)PM_LD_REF_L1 / PM_LD_MISS_L1

number of stores per store miss

(double)PM_ST_REF_L1 / PM_ST_MISS_L1

number of load/stores per L1 miss

((double)PM_LD_REF_L1 + (double)PM_ST_REF_L1)

/ ((double)PM_ST_MISS_L1 + (double)PM_LD_MISS_L1)

L1 cache hit rate

100.0 * (1.0 - ((double)PM_LD_REF_L1 + (double)PM_ST_REF_L1)

/ ((double)PM_ST_MISS_L1 + (double)PM_LD_MISS_L1))

number of loads per TLB miss

(double)PM_LD_REF_L1 / PM_DTLB_MISS

number of loads/stores per TLB miss

((double)PM_LD_REF_L1 + (double)PM_ST_REF_L1) / PM_DTLB_MISS

62

Total Loads from L2

tot_ld_L2 = sum((double)PM_DATA_FROM_L2*) / (1024*1024)

L2 load traffic

L1_cache_line_size * tot_ld_L2

L2 load bandwidth per processor

L1_cache_line_size * tot_ld_L2 / wall_clock_time

Estimated latency from loads from L2

(HPM_L2_LATENCY*(double)PM_DATA_FROM_L2

+ HPM_L25_LATENCY*(double)sum(PM_DATA_FROM_L25*)

+ HPM_L275_LATENCY*(double)sum(PM_DATA_FROM_L275*))

* cycle_time

% loads from L2 per cycle

100.0 * tot_ld_L2 / PM_CYC

Total Loads from local L2

tot_ld_l_L2 = (double)PM_DATA_FROM_L2 / (1024*1024)

local L2 load traffic

L1_cache_line_size * tot_ld_l_L2

local L2 load bandwidth per processor

L1_cache_line_size * tot_ld_l_L2 / wall_clock_time

Estimated latency from loads from local L2

HPM_L2_LATENCY * (double)PM_DATA_FROM_L2 * cycle_time

% loads from local L2 per cycle

100.0 * (double)PM_DATA_FROM_L2 / PM_CYC

Total Loads from L3

tot_ld_L3 = sum((double)PM_DATA_FROM_L3*) / (1024*1024)

L3 load traffic

L2_cache_line_size * tot_ld_L3

L3 load bandwidth per processor

63

L2_cache_line_size * tot_ld_L2 / wall_clock_time

Estimated latency from loads from L3

(HPM_L3_LATENCY*(double)PM_DATA_FROM_L3

+ HPM_L35_LATENCY*(double)PM_DATA_FROM_L35) * cycle_time

% loads from L3 per cycle

100.0 * (double)sum(PM_DATA_FROM_L3*) / PM_CYC

Total Loads from local L3

tot_ld_l_L3 = (double)PM_DATA_FROM_L3 / (1024*1024)

local L3 load traffic

L2_cache_line_size * tot_ld_l_L3

local L3 load bandwidth per processor

L2_cache_line_size * tot_ld_l_L3 / wall_clock_time

Estimated latency from loads from local L3

HPM_L3_LATENCY * (double)PM_DATA_FROM_L3 * cycle_time

% loads from local L3 per cycle

100.0 * (double)PM_DATA_FROM_L3 / PM_CYC

Total Loads from memory

tot_ld_mem = (double)PM_DATA_FROM_MEM / (1024*1024)

memory load traffic

L3_cache_line_size * tot_ld_mem

memory load bandwidth per processor

L3_cache_line_size * tot_ld_mem / wall_clock_time

Estimated latency from loads from memory

HPM_MEM_LATENCY * (double)PM_DATA_FROM_MEM * cycle_time

% loads from memory per cycle

100.0 * (double)PM_DATA_FROM_MEM / PM_CYC

Total Loads from local memory

tot_ld_lmem = (double)PM_DATA_FROM_LMEM / (1024*1024)

64

local memory load traffic

L3_cache_line_size * tot_ld_lmem

local memory load bandwidth per processor

L3_cache_line_size * tot_ld_lmem / wall_clock_time

Estimated latency from loads from local memory

HPM_MEM_LATENCY * (double)PM_DATA_FROM_LMEM * cycle_time

% loads from local memory per cycle

100.0 (double)PM_DATA_FROM_LMEM / PM_CYC

% TLB misses per cycle

100.0 * (double)PM_DTLB_MISS / PM_CYC

% TLB misses per run cycle

100.0 * (double)PM_DTLB_MISS / PM_RUN_CYC

Estimated latency from TLB misses

HPM_TLB_LATENCY * (double)PM_DTLB_MISS * cycle_time

HW float point instructions (flips)

(flips = (double) PM_FPU_FIN) * 0.000001 -- or --

(flips = (double)(PM_FPU0_FIN + PM_FPU1_FIN))* 0.000001

HW float point instructions per cycle

flips / PM_CYC

HW float point instructions per run cycle

flips / PM_RUN_CYC

HW floating point instr. rate (HW flips / WCT)

flips * 0.000001 / wall_clock_time

HW floating point instructions/ user time

flips * 0.000001 / user_time

Total floating point operations

(flops = (double)(PM_FPU0_FIN + PM_FPU1_FIN

+PM_FPU_FMA - PM_FPU_STF)) *0.000001

65

Flop rate (flops / WCT)

flops * 0.000001/ wall_clock_time

Flops / user time

flops * 0.000001/ user_time

Algebraic floating point operations

(aflops = (double)(PM_FPU_1FLOP + 2*PM_FPU_FMA)) * 0.000001

Algebraic flop rate (flops / WCT)

aflops * 0.000001 / wall_clock_time

Algebraic flops / user time

aflops * 0.000001 / user_time

Weighted Floating Point operations

(wflops = flops + (HPM_DIV_WEIGHT-1)*PM_FPU_FDIV) * 0.000001

Weighted flop rate (flops / WCT)

wflops * 0.000001 / wall_clock_time

Weighted flops / user time

wflops * 0.000001 / user_time

FMA percentage

100.0 * 2*PM_FPU_FMA / flops (on Power4)

100.0 * 2*PM_FPU_FMA / aflops (on Power5)

100.0 * 2*PM_FPU_FMA / flops (on Power6)

Computation intensity

flops / fp_tot_ls

% of peak performance

100.0 * flops * cycle_time/ (4*user_time) (on Power4)

100.0 * aflops * cycle_time/ (4*user_time) (on Power5)

100.0 * flops * cycle_time/ (4*user_time) (on Power6)

66

	The HPM Toolkit
	hpmcount
	Quick Start
	Usage
	Events and Groups
	Multiplexing
	Derived Metrics
	What are Derived Metrics
	MFlop Issues
	Latency Computation

	Inheritance
	Considerations for MPI Parallel Programs
	General Considerations
	Distributors
	Aggregators
	Plug-ins shipped with the Tool Kit
	User defined Plug-ins
	Detailed Interface Description
	Getting the plug-ins to work

	Shared Object Trouble Shooting

	LIBHPM
	Quick Start
	Events and Groups
	Multiplexing
	Derived Metrics
	What are Derived Metrics
	MFlop Issues
	Latency Computation

	Inheritance
	Inclusive and Exclusive Values
	What are Exclusive Values ?
	Parent-Child Relations
	Handling of Overlap Issues
	Computation of Exclusive Values for Derived Metrics

	Function Reference
	Measurement Overhead
	Output
	Examples of Use
	C and C++
	Fortran

	Multi-Threaded Program Instrumentation Issues
	Considerations for MPI Parallel Programs
	General Considerations
	Distributors
	Aggregators
	Plug-ins shipped with the Tool Kit
	User defined Plug-ins
	Detailed Interface Description
	Getting the plug-ins to work

	Compiling and Linking
	Dynamic Linking
	Static Linking

	hpmstat
	Quick Start
	Usage
	Events and Groups

	Reference
	List of Environment Variables
	Derived Metrics Description

