
ibm.com/redbooks

Unfolding the IBM
Eserver Blue Gene
Solution

Nicholas Allsopp Antoine Tabary
Jonathan Follows Pascal Vezolle
Michael Hennecke Hari Reddy
Fumiyasu Ishibashi Carlos Sosa
Michael Paolini Sheeba Prakash
Dino Quintero Octavian Lascu

Understand the Blue Gene
architecture

Select suitable applications for
implementation

Learn about our
experiences in porting
parallel applications

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Unfolding the IBM Eserver Blue Gene Solution

September 2005

International Technical Support Organization

SG24-6686-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (September 2005)

This edition applies to IBM eServer Blue Gene Solution Driver Version 280 (July 8th, 2005).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xvi
Comments welcome. xvii

Part 1. Blue Gene/L - the System. 1

Chapter 1. Introduction to BG/L . 3
1.1 Overview of massive parallel processing (MPP) . 4
1.2 Overview of the IBM eServer Blue Gene Solution 7

1.2.1 Blue Gene/L design points . 8
1.2.2 Where does BlueGene/L fit into the picture 11

Chapter 2. Blue Gene/L architecture . 13
2.1 General architecture . 14

2.1.1 Nodes (Compute, I/O) . 16
2.1.2 Blue Gene/L environment . 16
2.1.3 The service node (one per Blue Gene/L system) 18
2.1.4 One or more front-end nodes . 18
2.1.5 File system . 18
2.1.6 Communications . 19
2.1.7 Execution environment . 24
2.1.8 Handling failures . 26

2.2 Node hardware . 27
2.2.1 Processor – System-on-a-chip – the PPC440 27
2.2.2 Blue Gene/L PowerPC 440 core overview . 29
2.2.3 Memory system overview . 31
2.2.4 Double floating point unit overview . 33

2.3 Blue Gene/L Software . 35
2.3.1 System software . 35
2.3.2 Management software. 36

Chapter 3. Planning and sizing guidelines . 39
3.1 Introduction to Blue Gene/L architecture. 40

3.1.1 Compute nodes and I/O nodes . 40
3.1.2 Compute node to I/O node ratio . 42
© Copyright IBM Corp. 2005. All rights reserved. iii

3.1.3 Building blocks for scalable I/O . 44
3.2 Service node and front end nodes . 45

3.2.1 Hardware planning . 46
3.2.2 Operating system . 50
3.2.3 Software . 51

3.3 Network sizing considerations. 53
3.3.1 Functional network . 53
3.3.2 Control (service) network . 54

3.4 File system configuration. 56
3.4.1 I/O servers. 57
3.4.2 NFS . 58
3.4.3 GPFS . 60

Chapter 4. System management . 63
4.1 Operating your BG/L . 64

4.1.1 Remote shell . 64
4.2 Monitoring (HW, system SW) . 66

4.2.1 Monitoring logs via the MMCS software . 66
4.2.2 Monitoring via the databases . 67
4.2.3 Web interface for the database (BGWEB) . 70

4.3 User environment (variables, directories) . 75
4.3.1 Variables for DB2 . 76
4.3.2 Variables for MMCS . 76
4.3.3 Variables for MPIRUN. 76
4.3.4 Variables for the compilers . 77
4.3.5 The /bgl directory (the shared file system) . 77

4.4 Scheduling (running) jobs . 77
4.4.1 MPIRUN . 78
4.4.2 IBM LoadLeveler . 78
4.4.3 mmcs_db_console . 78

4.5 Configuration and reconfiguration . 79
4.5.1 Configuring system software images . 79
4.5.2 Blocks (Partitions) . 79

Part 2. BG/L application environment . 81

Chapter 5. Parallel environment. 83
5.1 Application development environment . 84
5.2 XL compilers . 86

5.2.1 Optimization level . 86
5.2.2 Machine-specific flags. 88
5.2.3 High-order transformations . 89
5.2.4 Interprocedural analysis . 90
5.2.5 XL FORTRAN new and changed functionality 90
iv Unfolding the IBM ̂Blue Gene Solution

5.2.6 Compiler directives for performance . 92
5.2.7 Directive usage . 94
5.2.8 Blue Gene/L compiler features . 96
5.2.9 Blue Gene/L compiler flags . 101

5.3 Parallel execution environment . 102
5.3.1 Using mpirun . 107
5.3.2 Mapping MPI tasks to Blue Gene/L nodes 109

5.4 Other application development tools . 117
5.4.1 The environment on the front-end nodes . 117
5.4.2 Debuggers. 117
5.4.3 Profiling . 118
5.4.4 BG/L hardware counters . 118
5.4.5 The IBM High Performance Computing Toolkit. 119
5.4.6 Third-party performance tools . 122

5.5 Job management. 123
5.5.1 LoadLeveler . 123

Chapter 6. Porting applications . 127
6.1 Does your application fit on Blue Gene/L . 128

6.1.1 System call summary . 128
6.1.2 Processes and threads . 129
6.1.3 File system calls . 131
6.1.4 I/O-intensive applications . 132
6.1.5 Networking support . 133
6.1.6 Timer support . 133
6.1.7 STDIN support . 134
6.1.8 Memory . 134
6.1.9 SMP . 136

6.2 Single CPU - porting serial applications . 137
6.2.1 Porting serial code on Blue Gene/L . 138
6.2.2 Obtaining and understanding an object code listing 142
6.2.3 Memory alignment, aliasing, and versioning 146
6.2.4 Exploiting the double FPU. 150
6.2.5 Divide, square root operations, and vector intrinsic functions. 159
6.2.6 Memory management . 160
6.2.7 Math libraries. 168
6.2.8 Performance measurement. 174

6.3 Porting parallel applications . 176
6.3.1 The BG/L programming model . 176
6.3.2 MPI features supported on BG/L. 177
6.3.3 The BG/L MPI implementation . 178
6.3.4 MPI point-to-point performance. 184
6.3.5 MPI collective performance. 188
 Contents v

6.3.6 Co-processor mode versus virtual node mode 190
6.4 I/O operations . 191

6.4.1 How the I/O works. 191
6.4.2 Compute nodes mapping to I/O nodes . 193
6.4.3 Do not use one file per I/O node . 195
6.4.4 Do not use one task doing all I/O . 195

6.5 Debugging . 196
6.5.1 Debugging by printf() or PRINT. 196
6.5.2 Instrumenting function entry and exit . 196
6.5.3 Using the GNU debugger . 198
6.5.4 TotalView . 204
6.5.5 Debugging parallel programs . 205
6.5.6 Tracking your memory usage . 205
6.5.7 Core files and addr2line . 205

Chapter 7. Massively parallel tuning . 207
7.1 Application mapping . 208

7.1.1 Problem description . 208
7.1.2 Mapping scenarios . 211
7.1.3 Mapping file semantics in Blue Gene/L. 217
7.1.4 Automatic mapping methods. 220
7.1.5 Manual mapping methods. 223
7.1.6 Mapping experiments . 226
7.1.7 General guidelines for application mapping 230
7.1.8 MPI topologies and Cartesian communicators 231

7.2 Limitations on scaling . 238
7.3 Hints on how to parallelize codes . 239

7.3.1 All-to-all communication . 239
7.3.2 Eager limit and message routing. 241

7.4 Other general suggestions . 242

Part 3. Application porting examples . 247

Chapter 8. Applications on Blue Gene . 249
8.1 Introduction . 250

8.1.1 General considerations and benchmark applications 250
8.1.2 High Performance Linpack (HPL) . 250
8.1.3 NAS Parallel Benchmarks. 253
8.1.4 Intel MPI Benchmarks . 258

8.2 DL_POLY . 262
8.2.1 Application description . 262
8.2.2 Planning for the application. 263
8.2.3 Characteristics of execution . 264
8.2.4 Scaling and tuning (optimization) . 265
vi Unfolding the IBM ̂Blue Gene Solution

8.3 AMBER8 . 268
8.3.1 AMBER8 description . 268
8.3.2 AMBER8 characteristics . 270
8.3.3 Planning for AMBER8 . 270
8.3.4 Blue Gene/L features . 271
8.3.5 Scaling and tuning AMBER8. 271

8.4 AVBP. 277
8.4.1 Application description . 277
8.4.2 Planning for the application. 280
8.4.3 Porting experience . 280
8.4.4 Scaling and tuning. 280

8.5 LS-DYNA. 285
8.5.1 Introduction . 285
8.5.2 Parallel implementation of LS-DYNA . 285
8.5.3 Running LS-DYNA on BG/L . 286
8.5.4 Scalability results for LS-DYNA on Blue Gene/L. 287

8.6 TRACE . 291
8.6.1 Application description . 291
8.6.2 Planning for the application. 291
8.6.3 Porting experience . 292

8.7 CPMD . 299
8.7.1 CPMD description . 299
8.7.2 Application characterization . 302
8.7.3 Enablement experience and test results . 303
8.7.4 Benchmark Data . 303

8.8 WRF . 306
8.8.1 Application description . 306
8.8.2 Characteristics . 307
8.8.3 Planning for the application. 307
8.8.4 Porting experience (depending on licensing) 308
8.8.5 Scaling and tuning (optimization) . 310

8.9 Local Model . 316
8.9.1 Description . 316
8.9.2 Characteristics . 318
8.9.3 Planning for LM . 320
8.9.4 Porting experience . 320
8.9.5 Scaling and tuning. 322

Part 4. Appendixes . 327

Appendix A. BG/L prior to porting code . 329

Appendix B. BG/L runtime system calls . 331
B.1 Calls in rts.h . 332
 Contents vii

B.2 Personality data in bglpersonality.h . 333
B.2.1 The sanity.c example . 334
B.2.2 Accessing the BG/L runtime information from FORTRAN 336
B.2.3 Sanity revisited: sanity.f90 . 339

Appendix C. Floating point instruction set . 341
C.1 Instruction types specific to BG/L PPC440 . 342
C.2 Additional floating point instructions . 343

C.2.1 Summary . 343
C.2.2 Add instructions . 344
C.2.3 Estimate instructions . 344
C.2.4 Multiply instructions . 345
C.2.5 Multiply-add instructions . 345
C.2.6 Select instruction . 347
C.2.7 Convert and round instructions. 347
C.2.8 Compare instruction . 347
C.2.9 Move instructions . 347
C.2.10 Load/store instructions . 348

Appendix D. Some useful utilities . 351
Users who have allocated partitions . 352
Active jobs. 352
Partitions which are defined . 354
Console environment . 355

Appendix E. Compiler configuration file . 357
Sample compiler options file . 358

Appendix F. Systems comparison . 365
Blue Gene/L and other contemporary architectures 365

Appendix G. Hardware counters . 369
G.1 Link with bgl_perfctr library on Blue Gene/L. 370
G.2 API details . 370
G.3 Ways of accessing the counters. 375

G.3.1 Counter update and copy-out. 375
G.3.2 Counter update and immediate access . 376
G.3.3 Counter update and lock . 376

G.4 Available counter events . 376
G.5 Correct API usage . 377

G.5.1 Using the second CPU . 377
G.5.2 Counter start, stop, and reset . 378
G.5.3 Locking semantics of bgl_perfctr . 379
viii Unfolding the IBM ̂Blue Gene Solution

Abbreviations and acronyms . 381

Related publications . 383
IBM Redbooks . 383
Other publications . 383
Online resources . 384
How to get IBM Redbooks . 385
Help from IBM . 385

Index . 387
 Contents ix

x Unfolding the IBM ̂Blue Gene Solution

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
eServer™
pSeries®
xSeries®
AIX 5L™
AIX®

BladeCenter®
Blue Gene®
DB2®
IBM®
LoadLeveler®
Open Power™
PowerPC®
POWER™

POWER3™
POWER4™
POWER5™
Redbooks™
Roma®
RS/6000®
WebSphere®

The following terms are trademarks of other companies:

Java, PDB, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft, Outlook, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Intel, Itanium, Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xii Unfolding the IBM ̂Blue Gene Solution

Preface

The IBM® eServer™ Blue Gene® Solution is a commercial version of the
research project, and Blue Gene/L represents a new entrant in the IBM Deep
Computing Portfolio. This IBM Redbook will help you to design and create a
solution for migrating and porting existing applications to run on the IBM eServer
Blue Gene system. It is targeted to application designers and programmers
working in a High Performance Computing environment.

The book is composed of three parts. In the first part we present an architectural
overview of the IBM eServer Blue Gene Solution, and describe the design
principles underlying this revolutionary supercomputer.

In the second part we summarize general guidelines for identifying the structure
of your application. Because simple application recompilation may not efficiently
exploit the massively parallel structure of this system, we identify and classify the
application characteristics you need to consider for efficient implementation on
the IBM eServer Blue Gene System.

In the final part, we describe several application porting experiences tested
during this project. Note that these experiences are presented for reference only,
and that the applications were not completely optimized for running on this
supercomputer. Nevertheless, they provide valuable insight into what you can
expect when running your application on a Blue Gene system.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Octavian Lascu is a Project Leader at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM
classes worldwide on all areas of pSeries® and Linux® clusters. Before joining
the ITSO, Octavian worked in IBM Global Services Romania as a software and
hardware Services Manager. He holds a Master's Degree in Electronic
Engineering from the Polytechnical Institute in Bucharest and is also an IBM
Certified Advanced Technical Expert in AIX/PSSP/HACMP. He has worked with
IBM since 1992.
© Copyright IBM Corp. 2005. All rights reserved. xiii

Dr. Nicholas Allsopp is an IT Specialist in the High Performance Computing
and Life Science group within Emerging Technology, Hursley Laboratory, UK.
His area of expertise is the porting and tuning of scientific and technical parallel
applications onto IBM hardware. He has been working with parallel computers
for more than 10 years. He holds a degree in Computer Aided Physics and a
Ph.D. in theoretical condensed matter physics.

Dr. Pascal Vezolle is an IBM Certified IT Specialist in the fields of systems
products and technical sales support. He works in the EMEA Deep Computing
organization at the Product Software Solution Center located in France. He has
more than 10 years of experience in high performance computing. Before joining
IBM in 2001 he worked for COMPAQ, where he was in charge of ISV support;
and for Saint-Gobain, where he was responsible for the Computing Research
center.

Jonathan Follows is an IBM Consulting IT Specialist in the UK. He designs and
helps implement high performance computing systems. He has 20 years of
experience with IBM and is a certified IT Specialist in the fields of networking and
large systems. Jonathan spent two years at the ITSO, Raleigh, writing books on
networking hardware and software. Jonathan studied Mathematics at Oxford
University, England, and holds a degree in Computing Science from London
University, England.

Michael Hennecke is an IT Specialist in the Deep Computing team in IBM
Germany, and is currently working as EMEA HPC technical architect for the
public sector. Before joining IBM, he worked at the Computing Center of the
University of Karlsruhe, Germany. Michael has 14 years of experience with
parallel computing, including ten years on the RS/6000® SP and Cluster 1600.
He holds a degree in Physics from the University of Bochum (RUB), Germany.

Fumiyasu Ishibashi is an IT Specialist in IBM Japan. He has over three years of
experience in deploying Linux solutions in complex environments. His areas of
expertise include Linux, networking, applications and high performance
computing clusters.

Michael Paolini is a Senior Solutions Architect within eServer Solutions for the
IBM Systems and Technology Group. He is responsible for driving strategy and
creation of Open Standards-based industry solutions architectures. Michael was
awarded the title of IBM Master Inventor for his extensive body of work, which
includes patents consistently ranked in the top tier of the IBM portfolio. Some of
the areas that Michael has worked in include the IBM Retail Environment for
SUSE Linux (IRES), WebSphere® Telecom Application Server (WTAS), UDDI
(Universal Description, Discovery, and Integration), SVG (Scalable Vector
Graphics), Web Services and the IBM WS Toolkit, Special Needs and
Accessibility, National Language Support (NLS) and Internationalization (L10 &
I18N), Device Drivers, and File Systems.
xiv Unfolding the IBM ̂Blue Gene Solution

Sheeba Prakash is an Advisory Software Engineer with the High Performance
Computing Team at IBM. She is an IBM Certified Advisory Accredited IT
Specialist in Technical Sales Support for pSeries UNIX® Systems. Sheeba
works at the eServer xSeries® and HPC Benchmark Center and provides
benchmark support for scientific and technical applications on p and x Series
Systems. She holds a Master's degree in Traffic Engineering and Transportation
Planning from National Institute of Technology, Calicut, India, and a Master of
Science in Computer Science from the University of Houston, Texas.

Dr. Hari Reddy is a Senior Software Engineer in Solution Enablement in the IBM
Systems and Technology Group. Hari joined IBM in 1990, and his areas of
expertise include porting and tuning large scale parallel applications. Hari has 18
years of experience in parallel computing dating back to Intel®'s Hypercube. He
holds Master of Science degrees in Operations Research and Computer
Science, and a Ph.D. in Computer Science.

Dr. Carlos Sosa is a Senior Technical Staff Member in the IBM Systems and
Technology Group, where he has been a member of the Chemistry and Life
Sciences high performance effort since 2001. For the past 18 years, he has
focused on scientific applications with emphasis in life sciences, parallel
programming, benchmarking, and performance tuning. He received a Ph.D.
degree in Physical Chemistry from Wayne State University and completed his
post-doctoral work at the Pacific Northwest National Laboratory. His area of
interest is future POWER™ architectures, Blue Gene/L and cellular molecular
biology.

Antoine Tabary is a certified High Performance Computing service I/T Specialist
working in Paris, France. He has 25 years of experience in HPC, including 10
years with Control Data and 15 years with IBM. Antoine holds a diploma of
Ingénieur civil des Mines from Ecole des mines de Nancy. He currently leads a
service team in HPC and xSeries for IBM Global Services, Systems Sales and
Implementation Services. His areas of expertise include CSM, GPFS,
LoadLeveler®, and MPI.

Dino Quintero is a Consulting IT Specialist at the International Technical
Support Organization, Poughkeepsie Center. Before joining the ITSO, he worked
as a Performance Analyst for the Enterprise Systems Group, and as a Disaster
Recovery Architect for IBM Global Services. His areas of expertise include
disaster recovery and pSeries clustering solutions. He is an IBM Senior Certified
Professional on pSeries technologies and also certified on pSeries system
administration and pSeries clustering technologies. Currently, he leads technical
teams that deliver IBM Redbook solutions on pSeries clustering technologies
and technical workshops worldwide.

Special thanks to Junko Ikeda and Yuichi Sugiyama, system engineers at NIWS,
Japan, for their contributions to this project.
 Preface xv

Thanks to the following people for their contributions to this project:

Manish Gupta, George Chiu, James Sexton, Robert (Bob) Walkup, Gheorghe
Almasi, John Gunnels, David Klepacki, Hao Yu, David Singer, Nathamuni
Ramanujam, Vijay Kumar
IBM Thomas J. Watson Research Center

Wolfgang Frings
Research Center Jülich (FZJ), Germany

Michael B. Brutman, Kathy Cebell, Charles J. Archer, Thomas Liebsch, Ralph
Warmack
IBM Rochester

Gautam Shah, Gary Sutherland, Patricia Clark, Endy Chiakpo
IBM Poughkeepsie

Kelvin Li, Roch Archambault
IBM Toronto

Gary Mullen-Schulz
International Technical Support Organization, Rochester Center

Alison Chandler, Terry Barthel
International Technical Support Organization, Poughkeepsie Center

Special thanks for the excellent material contributed to the application porting
experiences chapter in this book to:

Alessandro Curioni
IBM Research Zurich, Switzerland

Cristoph Pospiech
IBM Germany

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.
xvi Unfolding the IBM ̂Blue Gene Solution

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii Unfolding the IBM ̂Blue Gene Solution

Part 1 Blue Gene/L -
the System

The IBM Eserver Blue Gene Solution is a revolutionary and an important
milestone in computing—not just because it is the worlds fastest supercomputer,
but because it challenges our thinking and changes forever the way we approach
computing and build systems. Blue Gene/L is close to two orders of magnitude
smaller in size, and well over an order of magnitude better on power
consumption than the supercomputers it so easily outperforms. It represents a
brand new architecture and a shift in the way we think about approaching
problems.

This part presents the architecture of the IBM eServer Blue Gene Solution, along
with a discussion of some of the principles used to design this revolutionary
supercomputer.

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 Unfolding the IBM ̂Blue Gene Solution

Chapter 1. Introduction to BG/L

In this chapter, we present a short history of supercomputing at IBM, and provide
an overview of some of the basic ideas behind Blue Gene/L. We have tried to be
very succinct in what we have covered, including just the briefest of refreshers to
help re-enforce the concepts explored.

A key concept here is that the system must be looked at as an entity (single
system image), rather than looking at individual parts. For example, in today’s
systems there is an increasingly widening gap between processor performance
and memory performance.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 Overview of massive parallel processing (MPP)
For many years the number of transistors on a computer chip, or central
processing unit (CPU), doubled every couple of years, according to the so-called
Moore’s law. This meant that the number of floating point operations per second
(flops) a computer could perform also increased. Eventually the constraint on the
overall size of a single computer chip, and the physical limitations on how small a
transistor could be produced, stopped that increase in speed.

The point to which we can shrink transistors has an absolute limit, which we are
approaching, and also yields increasingly difficult side effects such as
electro-magnetic interference (EMI) and power leakage. Therefore, in order to
continue to yield increased performance, we must turn to the clustering of chips
together. This has led to the development of computers with numerous CPUs
sharing the same memory and requiring some very fast and sophisticated
interconnects, which increase the system cost as the number of CPUs within
these shared-memory machines increases.

The advent of commodity computing in the 1990s meant that the work of
large-scale machines giving increased flops could be achieved using individual
CPUs networked, or clustered, to function together as a single unit. This class of
systems became known as massively parallel processing (MPP) systems. These
systems are constrained by limits of physical size (floor space), power
consumption, and cooling needed to house and run the aggregated equipment.

From the application point of view it very quickly became apparent that the
limitation on increased flops depended not only on the individual performance of
the CPUs, but also on the performance of the holistic system on which the CPUs
depend, including the memory system, file access, and network (messaging).

It also became clear that this type of system is not appropriate for every
application because, as the number of processors increases, taking advantage
of them gets harder, and there are some types of applications that cannot take
advantage of the extra power. But for those that do, developers need access
now to large numbers of CPUs in order to find ways to scale their applications to
ever higher numbers of processors.

An interesting article about IBM supercomputing technology can be found at:

http://www.reed-electronics.com/electronicnews/article/CA508575.html?indust
ryid=21365
4 Unfolding the IBM ̂Blue Gene Solution

Figure 1-1 Supercomputer peak performance

Massively parallel processing systems in general have the following
characteristics:

� A single system image with up to thousands of nodes.

� The cost per flop is extremely low because each node is an inexpensive
processor.

� Each node has its own distinct, uniquely addressable memory.

� The nodes are connected together and organized into a grid, mesh, torus or
hypercube arrangement to allow each node to communicate with the other
nodes.

The MPP system has access to a huge amount of aggregated real memory for
the application operations to access because this is the sum of the memory
available to each node.

So what, traditionally, are MPP systems really good at? Solving “Grand
Challenge” problems is a key part of many high performance computing
applications. Grand Challenges are fundamental problems in science and
engineering with broad economic and scientific impact, and whose solution can
be advanced by applying high performance computing techniques and
resources.

1940 1950 1960 1970 1980 1990 2000 2010
Year Introduced

1E+2

1E+5

1E+8

1E+11

1E+14

1E+17

Pe
ak

 S
pe

ed
 (f

lo
ps

)

Doubling time = 1.5 yr.

ENIAC (vacuum tubes)
UNIVAC

IBM 701 IBM 704
IBM 7090 (transistors)

IBM Stretch
CDC 6600 (ICs)

CDC 7600
CDC STAR-100 (vectors) CRAY-1

Cyber 205 X-MP2 (parallel vectors)

CRAY-2
X-MP4Y-MP8

i860 (MPPs)

ASCI White, ASCI Q

Petaflop
Blue Gene/L

Blue Pacific

Delta
CM-5 Paragon

NWT

ASCI Red Option
ASCI Red

CP-PACS

Earth

VP2600/10
SX-3/44

Red Storm

ILLIAC IV

SX-2

SX-4

SX-5

S-810/20

T3D

T3E

multi-Petaflop

Thunder
 Chapter 1. Introduction to BG/L 5

Computer simulations play an increasingly important role in scientific
investigations, not only in supplementing, but more and more in replacing
traditional experiments. In engineering applications, such as automotive crash
studies, numerical simulation is much cheaper than physical experimentation. In
other applications such as global climate change, where experiments are
impossible, simulations are used to explore the fundamental scientific issues.

Figure 1-2 gives an overview of the application areas that benefit from MMP
hardware.

Figure 1-2 Application areas which could benefit from Blue Gene architecture

This figure does not necessary cover all application fields that may benefit from
Blue Gene. In fact, Blue Gene can be used for almost any application that
requires massive floating point calculation, provided that the application can be
analyzed, and perhaps tuned, to fit into the Blue Gene system.

Basic
algorithms and

numerical
methods

Fourier
Methods

Graph
Theoretic

Pattern
Matching

Symbolic
Processing

Transport

Partial Diff.
Equations

Ord. Diff.
Equations

Fields

N-Body

Discrete
Events

Monte-Carlo

Raster
Graphics

Molecular
Modeling

Biomolecular
Dynamics/ Proteine

FoldingRational
Drug Design

Fracture
Mechanics

Nanotechnology

VLSI
Design

Genome
Processing

Large Scale
Data Mining Cryptography

Seismic
Processing

Aerodynamics

Structural
Mechanics

Fluid
Dynamics

Multiphase
Flow

Weather and
Climate

Reaction-Diffusion

Flows in Porous
Media

Petroleum
Reservoirs
6 Unfolding the IBM ̂Blue Gene Solution

1.2 Overview of the IBM eServer Blue Gene Solution
During 4Q05, IBM announced the commercial availability of the IBM eServer
Blue Gene Solution, a commercial version of the research project. This is a full
rack system that can deliver (in the initial implementation) a peak performance of
5.7 Teraflops.

Multiple racks are designed to be linked together to function as a single computer
yielding one third of a Petaflop. Based on IBM’s Power architecture, the IBM
eServer Blue Gene Solution is optimized for bandwidth, scalability, and the ability
to handle large amounts of data while consuming a fraction of the electric power
and floor space required by today's fastest systems.

Blue Gene/L is IBM's first step in the journey to reach a 1 Petaflop computation
target, and also is a new entrant into the already rich IBM Deep Computing
portfolio.

Blue Gene/L is a newcomer to the ever-changing High Performance Computing
landscape. It is only natural for everyone to take a critical look at the newcomer to
determine what it is and what it is not, what it can and cannot do, and of course,
how it measures up against the established players in this field. BlueGene/L is no
exception.

Blue Gene/L already represents a phenomenal leap in the supercomputer race,
with a peak performance of 70+ Teraflops for 16 linked Blue Gene/L racks (32 K
processors), giving it the number one spot on the Top 500 Supercomputers list
(http://www.top500.org/). We can expect Blue Gene/L to have a long-term
presence on this landscape since the first fully populated system is expected to
reach 64 racks (128k processors) with a peak rate over 360 Teraflops.

From a practical point of view, Blue Gene/L is built starting with dual CPU
(processor) chips placed in pairs on a compute card together with 2 x 512MBytes
of RAM (512MB for each dual core chip). The compute card is placed on a 16
card plane (node card) which is inserted into a dual-sided 16-slot midplane. Two
such midplanes are hosted in a rack. These racks are then linked together.
Figure 1-3 shows this build up.
 Chapter 1. Introduction to BG/L 7

Figure 1-3 BG/L System buildup

1.2.1 Blue Gene/L design points
In their quest to live up to the challenge of Moore's Law to double the density of a
microprocessor, chip designers have been cramming more and more transistors
into the cm2 area of a chip, pushing the density of chips to astronomical levels.
The expectation is that a chip will have several billions of transistor/cm2 by 2010.
Such efforts to improve CPU clock and chip packing density have resulted in the
following:

1. The gap between the CPU speed and memory bandwidth has grown wider
(memory wall).

As shown in Figure 1-4, while the CPU clock rate has improved a thousand
fold during the last three decades, the DRAM clock rate has barely crossed a
ten fold improvement. Clearly, such a gap results in severe under utilization of
business investment in expensive processors.

2.8/5.6 GF/s
4 MB Cache

2 processors

2 chips, 1x2x1

5.6/11.2 GF/s
1.0 GB RAM

(32 chips 4x4x2)
16 compute, 0-2 IO cards

90/180 GF/s
16 GB RAM

32 Node Cards

2.8/5.6 TF/s
512 GB RAM

64 Racks, 64x32x32

180/360 TF/s
32 TB RAM

Rack

System

Node Card

Compute Card

Chip
8 Unfolding the IBM ̂Blue Gene Solution

2. Uncontrollable heat is generated due to the high density of transistors in the
chip and the increasing frequency.

Dense chip packaging generates uncontrollable heat, thereby limiting the
number of CPUs that can be packed into a frame or a rack (which has
become the industry-standard unit of delivery of computing power). How
much computing power can be packed into a frame and what it costs to
operate it in terms of the real-estate it takes and the cooling it needs are
measures that are used very commonly in the computing industry by
hardware vendors to compete with one another.

3. Improvements in communication latency and bandwidth, while significant,
have not kept up with the improvement in CPU clock rate.

.

Figure 1-4 CPU clock rate and Network performance

In order for a system to be scalable, the computation and communication in the
system should be balanced (refer to the Chapter 7, “Massively parallel tuning” on
page 207 for more information on this topic). Similar to the slow growth in
memory bandwidth, network bandwidth has not kept up with the increase in CPU
clock rate.

In distributed computing, even moderate exchanges of information can dominate
when a large number of processors are used, and this can have an adverse
affect on the scalability of the system.

The designers of Blue Gene/L have taken these factors into consideration:

� The widening gap between CPU and DRAM clock rates

C LO C K FR E Q U E N C IE S

1975 1980 1985 1990 1995 2000 2005

YEAR

1

10

100

1,000

10,000

MHz

Intel 32 DRAM-Clock rate
 Chapter 1. Introduction to BG/L 9

� Excessive heat generated by dense packaging and high switching frequency

� The disparity between the CPU clock rate and the immediate vicinity
peripheral devices (memory, I/O buses, and so forth)

� Network performance

The speed of the CPU is traded in favor of dense packaging and low power
consumption per processor. The result is Blue Gene/L.

Each frame of Blue Gene/L consists of 1024 chips, where each chip has two
modified PowerPC® 440s running at 700 MHz. These chips are connected by
five networks, some of which offer latency as low as 4 microseconds and
bandwidth of 350 Mb/sec. All this is packaged within a single rack with a power
consumption of 28.14 kWh (per rack)!

The Blue Gene/L is designed to implement a parallel programming model based
on Message Passing Interface.

Clearly, Blue Gene/L is not a the kind of “general purpose” supercomputer we
are familiar with in the computing industry today. The CPU used here has a much
lower clock frequency than other players in the field such as AMD Opteron, IBM
POWER, and Intel Pentium® 4. Also, it has not been designed to run server OS’s
like LINUX or AIX®. Thus, you should realize that the applications that can be
run on this supercomputer are of a very specific scientific and technical nature.

On the other hand, recent research has shown that for most high performance
computing applications, the current function and the associated overhead
provided by operating systems such as AIX and LINUX is not needed. In other
words, once a compute-intensive application is started it should not be
interrupted by the operating system daemons. Such interruptions involve context
switches, and context switches are expensive in CPU cycles.

This knowledge, coupled with the lack of need for most of the functions provided
by a contemporary multi-tasking OS, has allowed the size of the kernel running
on a Blue Gene/L processor to be reduced significantly. This results in an
extremely low OS-related overhead, and the user program runs uninterrupted by
the OS in a single tasking mode. Practically, the kernel which runs on a compute
node is only capable of running a single task (process) at a moment in time.
10 Unfolding the IBM ̂Blue Gene Solution

1.2.2 Where does BlueGene/L fit into the picture
For ease of discussion, we classify the applications that are considered for
implementation on Blue Gene/L into the following categories:

Extremely suitable
Applications in this class are highly “parallelizable” where the computer models
are very large, with inter-process (task) communication requirements that scale
so that the application can scale to several thousands of processors. The
computational resource requirements for these applications are fixed throughout
the duration of their execution. These applications typically have little or no
interaction with the external environment other than occasional checkpointing of
their state for processing continuation or restart.

Moderately suitable
This is the class of applications where the amount of effective parallelism is in the
range of using 128 CPUs to 256 CPUs, with some limited interactions such as
I/O or database. Although each job may not be using the complete Blue Gene/L
network capabilities, having multiple jobs of this kind executing simultaneously on
the system can be viewed as good utilization of Blue Gene/L. Some of these
applications can migrate into being very good candidates for Blue Gene/L if the
models used in these applications grow very large. Crash and Computational
Fluid Dynamics (CFD) simulations are examples of this application set.

Not suitable
Since the Blue Gene/L processor is significantly slower than its counterparts in
today’s supercomputers, Blue Gene/L is not a suitable architecture to implement
applications which are inherently serial or with very little parallelism. In addition, if
it were even possible, running 2048 serial applications on 2048 Blue Gene/L
processors packed into one frame would be an extreme case of under utilization
of expensive investment tied up in the sophisticated communication network in
Blue Gene/L.

Furthermore, when you run a serial application, you bar anyone from using any
other processor of your partition. Currently, the smallest partition is 32 nodes,
and some schedulers will not even consider partitions smaller than 512 nodes,
so there is tremendous waste of processing potential.

Since the OS facilities (such as sockets and I/O to interface extensively with the
external environment) are limited, applications that demand such interfaces may
not be suitable for implementation on Blue Gene/L. Because Blue Gene/L is
designed to run a tightly knit parallel application, there is no facility for the
external environment to initiate interaction with the processes running inside Blue
Gene/L(other than killing the entire job). All applications with such needs are not
 Chapter 1. Introduction to BG/L 11

suitable to run on Blue Gene/L. Examples of such applications are OLTP
transactions initiated by an external system.

Applications that require dynamic allocation/reallocation of resources, such as
CPUs or nodes, during the course of the computation are also not suitable for the
current implementation of Blue Gene/L. Finally, applications that can’t tolerate
failures are not suitable candidates for Blue Gene/L. This system aims for speed,
not redundancy.
12 Unfolding the IBM ̂Blue Gene Solution

Chapter 2. Blue Gene/L architecture

In this chapter we describe the IBM Eserver Blue Gene Solution architecture.
We begin with an overview of the machine, and then describe each piece of
hardware. To end the chapter, the software layer is introduced to explain how it
all works together.

This redbook gives a global view of the system. For in-depth knowledge of the
hardware and software refer to:

� BlueGene/L: Hardware Installation and Serviceability, ZG24-5002

� Blue Gene/L: Software Installation, Configuration, and Administration,
SG24-6744

2

© Copyright IBM Corp. 2005. All rights reserved. 13

2.1 General architecture
Blue Gene/L is a massively parallel machine. To understand it, you have to think
of it as a collection of small building blocks connected together by a network
fabric. We present it starting with the base elements, and showing how those
base elements are packaged in order to become the current fastest computer.

Figure 2-1 shows the Blue Gene/L system architecture, from the smallest block
to the full system.

Figure 2-1 Blue Gene/L system buildup

Chip The Blue Gene/L base component is a dual-core CPU chip (one
node). The CPU frequency is 700 MHz and each CPU can perform
four floating point operations per cycle, giving a theoretical peak
performance of 2.8 Gflops/chip. The chip constitutes the compute
node.

Compute card
A pair of compute nodes is soldered to a small processor card, two
per card, together with memory (RAM), to create a compute card (two
nodes). The memory for each chip is soldered on the other side of the

2/17/2005 14

BlueGene/L System Buildup

2.8/5.6 GF/s
512 MB

2 processors

2 chips, 1x2x1

5.6/11.2 GF/s
1.0 GB

(32 chips 4x4x2)
16 compute, 0-2 IO cards

90/180 GF/s
16 GB

32 Node Cards

2.8/5.6 TF/s
512 GB

64 Racks, 64x32x32

180/360 TF/s
32 TB

Rack

System

Node Card

Compute Card

Chip
14 Unfolding the IBM ̂Blue Gene Solution

processor card; the amount of RAM per card is 1 GB (512 MB per
compute node).

I/O card The I/O card is very similar to the compute card. A pair of compute
nodes is soldered to a small processor card, two per card, together
with memory (RAM), to create a compute card (two nodes). The
memory for each chip can be soldered, in this case, on both sides of
the card, for up to 2GB RAM per card (1GB per node). In addition, the
I/O card has the integrated ethernet enabled (for communicating with
the outside world).

Compute Node card
The processor cards are plugged on a node card. There are two rows
of eight compute cards on the node card (planar). You can also add
two or four I/O nodes to a node card, but these are optional on each
node card.

Midplane The processor cards, which bear 16 compute cards, are stacked in a
midplane that sits in a rack.

Rack A rack holds two midplanes, for a total of 32 compute cards.

System You can connect up to 64 racks for your Blue Gene/L system.

System buildup
The number of processors in a machine is computed this way:

(number of racks) x (number of node cards per rack) x (number of compute
cards per node card) x (number of processors per compute card)

That is:

(number of racks) x 32 x 16 x 4 = (number of racks) x 2048.

The actual largest configuration contains (64 x 2048) = 131072 processors.

This is a slightly simplified view of Blue Gene/L. In order for the system to be
efficient, we need to connect the nodes to each other with a network. We
describe this network further in 2.1.6, “Communications” on page 19.

You may have noticed that up to now we only mentioned CPU and memory. This
is the core of the computing power, but for the entire system to work, we also
need to be able to perform I/O operations. This is achieved through the I/O node
that connect to the outside world through a gigabit ethernet network (also known
as a functional network).

Note: We do not count the I/O processors because they do not contribute to
the computation power (they do only I/O operations).
 Chapter 2. Blue Gene/L architecture 15

Blue Gene/L is connected to the outside world via several components: one
service node, one or more front-end nodes, and a global file system.

2.1.1 Nodes (Compute, I/O)
As previously mentioned, nodes are made of one dual core chip soldered in pairs
on a small card with 2 x 512 MB of memory.

The nodes do not have local persistent storage (file system), therefore, they must
use outside storage for I/O operations. In order to reach the outside world, a
compute node goes through an I/O node.

The hardware for both types of nodes is virtually identical, they only differ in the
way they are used (there may be also extra RAM on the I/O nodes, and the
physical connectors ar different). A compute node runs a light, UNIX-like
proprietary kernel (compute node kernel - CNK); all system calls for I/O are
shipped to one I/O node.

The I/O node is connected to the outside world through an ethernet port to the
gigabit (functional) network and can perform file I/O operations.

We need a way to administer the machine, and a way for users to connect to it
and submit jobs. We examine these topics in the following sections.

2.1.2 Blue Gene/L environment
Figure 2-2 presents an overview of the components of a IBM Eserver Blue
Gene Solution environment.

Note: The only way to exchange data and to load programs into the Blue
Gene/L system is through file I/O operations. There is no interactive I/O
(keyboard, mouse) with the compute and I/O nodes.

Moreover, the compute nodes do not perform file I/O operations (they are not
connected to the functional network).
16 Unfolding the IBM ̂Blue Gene Solution

Figure 2-2 Blue Gene/L System Architecture

This section briefly describes the key components of the Blue Gene/L system:

Service node Used for controlling the Blue Gene/L system

Front-end nodes Users log in to these nodes and submit jobs to the Blue
Gene/L system

Compute nodes The compute engines inside the Blue Gene/L racks

I/O nodes Installed inside the Blue Gene/L racks

File servers Provide a file system accessible both by the front end
nodes and by the I/O nodes

Functional network A common network used by all components of the Blue
Gene/L system except the compute nodes

Control (service) network
Used for specific system control functions between the
service node and the I/O nodes

Important: At the time this book was written, a formal set of documents is
provided for each Blue Gene/L installation - a Statement Of Work (SOW). This
SOW is the formal statement from IBM of what is required for a specific Blue
Gene/L installation, and should be considered as authoritative for that specific
installation.

BlueGene/L System Architecture

Functional
Gigabit

Ethernet

Functional
Gigabit

Ethernet

I/O Node 0

Linux

ciod

C-Node 0

CNK

I/O Node 1023

Linux

ciod

C-Node 0

CNK

C-Node 63

CNK

C-Node 63

CNK

Control
Gigabit

Ethernet

Control
Gigabit

Ethernet

IDo chip

LoadLeveler

System
Console

CMCS

JTAG

torus

tree

DB2

Front-end
Nodes

Pset 1023

Pset 0

I2C

File
Servers

fs client

fs client

Service Node

app app

appapp
 Chapter 2. Blue Gene/L architecture 17

The following sections present general guidelines which should apply to all Blue
Gene/L installations.

2.1.3 The service node (one per Blue Gene/L system)
The service node is the manager of the Blue Gene/L solution. Beware, the term
node may be misleading, since this is not one of the Blue Gene/L compute or I/O
nodes, but a separate pSeries server (or an LPAR) running Linux.

The service node keeps track of the entire configuration and enables you to
initiate any action on the Blue Gene/L system. This node allows you to manage
Blue Gene/L, partition it, boot the nodes in any partition, and submit jobs to them.

2.1.4 One or more front-end nodes
You do not want to tie up Blue Gene/L resources for everyday interactive tasks.
Since the only I/O possible is file I/O, there is no way to log on to Blue Gene/L.
The users connect to front-end nodes to interact with the system. Here again, the
term node may be misleading, because the front-end nodes are not part of the
Blue Gene/L system, they are standalone pSeries Linux servers (or LPARs).

Since the nodes do not run a full-featured operating system, and there is no
compiler on the nodes, jobs must be cross-compiled on the front-end nodes (or
any other pSeries system running Linux or AIX) with a cross-compiler capable of
generating code for the Blue Gene/L processor (a modified PPC440).

Jobs can only be submitted on the front-end nodes; the service node allocates
the necessary resources on Blue Gene/L for them to run.

2.1.5 File system
Since all programs and data are prepared outside of the Blue Gene/L system,
and there are no local disks inside the system, we need a global file system
shared by the Blue Gene/L system (via I/O nodes), the service node, and the
front-end nodes.

Currently, this global file system is mounted from an NFS server on the service
node, on the front-end nodes, and on each I/O node of the Blue Gene/L system
(every time a partition is booted).

Important: This is an important part of the machine and must not come as an
afterthought. If you are architecting a solution, refer to Section 3.2, “Service
node and front end nodes” on page 45.
18 Unfolding the IBM ̂Blue Gene Solution

An embedded GPFS (General Parallel File System - IBM’s high performance
cluster file system) client for the I/O node is currently under development, this
would eventually lift the limitations in the NFS model.

2.1.6 Communications
This part is divided because the subject covers two completely different
functionalities. There are two types of communications:

� High performance network for efficient parallel execution

� Connection to the outside world

High performance network
In parallel computing there are two characteristics of the network that are of
interest:

Bandwidth How many megabytes of data can one send from a node
to another node in a second

Latency How long does it take for the first byte sent from one node
to reach its target node

These two values characterize one link. On many high performance computing
clusters today, the network fabric is assimilated to a switch. That is, we consider
that all nodes are connected to all nodes and all links have the same speed. We
view it as a full crossbar, but this is usually not true beyond 64 nodes or even on
smaller configurations, although it is a good approximation. As the number of
nodes grows, it is more and more complex to achieve the full structure, and less
and less efficient.

Instead of implementing a single type of network capable of transporting all
protocols needed in such an environment, the Blue Gene/L has implemented
separate networks for different types of communications.

The torus network
On Blue Gene/L we are not using a switch but a 3D torus. Unfortunately, a 3D
torus cannot be drawn in a readable way. In order to understand what it is, let us
first look at a 3D mesh.
 Chapter 2. Blue Gene/L architecture 19

Figure 2-3 A 3D mesh

As you can see in Figure 2-3, the central (red) cube N in the mesh is connected
to all its six neighbors. There is no diagonal connection; thus, if this node wants
to communicate with the cube at the bottom right (AA) it has to go in three steps:
one step front, one step left, and one step down.

The three steps can be taken in any order, yielding a total of six possible routes,
all of them having the same Manhattan length, which is 3.

The 3D mesh is the first step to understanding a 3D torus. The second step is to
go from a 1D mesh to a 1D torus.

A B C

J K L

S T U

D E F

M N O

V W X

G H I

P Q R

Y Z AA
20 Unfolding the IBM ̂Blue Gene Solution

Figure 2-4 Turning a mesh into a torus

To change a mesh into a torus you just connect the opposite cubes in a closing
loop. The closing loop seems longer on the drawing, but a message will take the
same time to navigate that link as any other link.

Now, if you want to complete the 3D mesh into a 3D torus, let us see what has to
be done for the front bottom left-most cube. It already has links on its upper, its
back and its right face. We now need to connect the 3 other faces. The left face is
connected to the right face of the front bottom right-most cube. The bottom face
is connected to the upper face of the front upper left-most cube. The front face is
connected to the back face of the back bottom left-most cube. See Figure 2-5.

1D mesh

1D torus
 Chapter 2. Blue Gene/L architecture 21

Figure 2-5 Building the 3D torus

Imagine the same pattern of connections was added to all cubes at the edges
and the corners of the torus. All cubes are now connected to 6 neighbors. The
cubes in the drawing represent compute nodes. In Figure 2-6 you can see a
more elaborate torus comprised of 64 compute nodes (in this case cubes have
been replaced with spheres).

A B C

J K L

S T U

D E F

M N O

V W X

G H I

P Q R

Y Z AA
22 Unfolding the IBM ̂Blue Gene Solution

Figure 2-6 The 3D torus 4 x 4 x 4 (64) nodes

The collective network
The 3D torus is an efficient network for communicating with neighbors. But
during program run, some calls are more global than others, like all-to-one,
one-to-all, and all-to-all. For these, Blue Gene/L provides another network: the
collective network.

The collective network connects all the compute nodes in the shape of a tree;
any node can be the tree root (originating point).

MPI implementation will use that network each time it happens to be more
efficient than the torus network for collective communication.

The barrier (global interrupt) network
As the number of tasks grows, a simple (software) barrier in MPI costs more and
more. On a very large number of nodes, an efficient barrier becomes mandatory.
 Chapter 2. Blue Gene/L architecture 23

The barrier (global interrupt) network is the third dedicated hardware network
Blue Gene/L provides for efficient MPI communication.

Connection to the outside world
All interactions between the Blue Gene/L compute nodes and the outside world
are carried through the I/O nodes under the control of the service node. There
are two networks connecting the service node to the I/O nodes:

� A gigabit network (gigabit (functional) network)

� The service network (essentially another ethernet network, but converted to
the internal jtag network via the service cards)

The gigabit network (gigabit (functional) network)
This network is used to mount the global file system to allow Blue Gene/L access
to file I/O. The I/O node further communicates to compute nodes through the
collective network.

The service network (jtag network)
The jtag network grants the service node direct access to the Blue Gene/L
nodes. It is used to boot the nodes (initialize the hardware, load the kernel, and
so forth). Each node card has a chip that converts the JTAG connections coming
from both compute and I/O nodes into a 100Mbps ethernet network, which is
further connected to the service node.

2.1.7 Execution environment
The end-user environment is the front-end node, which is a pSeries server
running Linux used for cross-compiling (to produce executable code for the
compute nodes). Cross-compiling is not very different from compiling, it just uses
different compiler options, and creates an executable that cannot run on the
front-end node but runs on the Blue Gene/L compute nodes. You just need to
use the proper FC or CC value in your makefile, and maybe some FFLAGS,
CFLAGS, and LDFLAGS as well, to generate the executable you need for Blue

Important: If you are designing the architecture for a Blue Gene/L solution, do
not forget that this implies the use of one or more ethernet switches that have
to be properly sized. For more information refer to Section 3.3, “Network sizing
considerations” on page 53.

Note: The global file system only has to be “global” to all the nodes in a
partition, plus the service node and the front end node used to submit the job.
You may have different file systems for different partitions (if needed).
24 Unfolding the IBM ̂Blue Gene Solution

Gene/L. Details about compiling a job are provided in Chapter 5, “Parallel
environment” on page 83.

To run an application on Blue Gene/L, you need a mechanism to schedule the
job. There are currently three ways to execute a program:

� LoadLeveler

� mpirun

� Directly submitting a job from the BG/L console (running on the service node)

In all cases, the executable is started on a set of Blue Gene/L processors. The
sets are defined by the system administrator when Blue Gene/L is installed and
configured. These sets are called partitions.

One partition is entirely dedicated to your job; it is even rebooted before your job
is started. Boot time usually takes only a few seconds. No one else has access to
your partition while your job is running. The communication networks inside a
partition (torus, collective, global interrupt) are isolated from the rest of Blue
Gene/L.

Since your job needs data (read and write), this has to reside on an NFS file
system that is mounted on Blue Gene/L I/O nodes, and also mounted on the
front-end node, so that you can prepare the files from your environment on the
front-end node. The standard error and standard output (job results) are also
created on the specified file system.

There are plans to use General Parallel File System (GPFS) on the I/O nodes, as
client nodes to external GPFS servers. GPFS will provide better I/O performance

Attention: At the time this material was written, we were mostly using console
mode to allocate partitions and submit jobs. In that mode it is possible to
access partitions that are smaller than a midplane (512 nodes/1024
processors).

The smallest partition we could use was a node card (32 nodes/64
processors). When a partition is smaller than a midplane, the 3D torus cannot
be created (some nodes in that partition do not have six neighbors); you only
have a 3D mesh. When a partition is a single node card, the mesh is 2D. But,
with such a small configuration, having to use a mesh instead of a torus does
not generate much overhead.

Note: Allocating less than a midplane may not be supported in normal
customer environments.
 Chapter 2. Blue Gene/L architecture 25

than NFS, but it was not available on the I/O nodes at the time we wrote this
book.

Once your job is finished, the partition may be freed for another user.

Partitions may be subparts of other partitions. In that case, when a large partition
is in use, none of the smaller partitions inside it can be allocated.

2.1.8 Handling failures

Job failure
Because the amount of memory on the compute nodes in limited (512MB in
co-processor mode and 256MB in virtual node mode), depending on how your
program was written and compiled, running out of memory is the most frequent
error. The heap area of a code is allocated from lower to higher memory
addresses, right on top of text, data, and bss (block starting segment).

The stack area is allocated from highest to lower memory addresses. The code
may end up overwriting heap data with stack data, which generally causes the
program to fail. It may even get to a point where no error message can be
generated.

When running in console mode, the job comes out with an “E” status and you
need to reboot the partition (re-initialize the HW and reload the kernel). This is
easily done by first freeing the partition and then reallocating it. In other modes,
the system takes care of this task.

If your job ends up in an infinite loop, you need to kill it. Although MPI deadlock
situations can occur, they are seldom seen because the MPI implementation was
designed to abort rather than loop.

System failure
All hardware and software problems that occur in a Blue Gene/L are recorded on
the service node. There is a DB2® database dedicated to Reliability, Availability,
and Serviceability (RAS), and in this database you can find the fault and take
corrective actions.

Hardware failure
Because Blue Gene/L is designed to be partitioned, only the partitions that
contain a failing part are impacted by a hardware failure.

Note: Overlapping partitions with running jobs at any point in time is not
possible. The system protects you from this.
26 Unfolding the IBM ̂Blue Gene Solution

In case of hardware failure, the RAS database points to the faulty part. If it is a
compute node or an I/O node, you just have to power off the node card where it
this is located, remove the card, replace the failing node, reposition the node
card, and power it on again. Note that during this operation, any partition
containing that card cannot be used.

The rest of the machine will still be up and running.

Bulk Power Modules (BPMs) and fans are redundant and hot-swappable. As
soon as an error is reported in the RAS database, you can initiate replacement of
the failing part without incurring any down time.

2.2 Node hardware
This section provides a short description of the node hardware, including internal
processor memory, buses, and double floating point units.

2.2.1 Processor – System-on-a-chip – the PPC440
This section provides details about the Blue Gene/L Compute Application
Specific Integrated Circuits (ASIC) that are significant to application
programmers concerned with understanding processor architecture. The ASIC is
a complete System-on-a-chip (SIC) built using a 0.13-micron process with an
11.1 mm die size. Each chip integrates:

� Two 32-bit PowerPC 440x5 integer CPU cores at 700 MHz, 32 KB instruction,
and 32 KB data first-level (L1) cache

� Double 64-bit Float-Point Unit (FPU)

� Two independent 2 KB second-level (L2) caches

� One 16 KB multiported Scratch SRAM buffer

� 4 MB of shared embedded EDRAM as third-level (L3) cache

� One memory DDR-SDRAM controller for external memory

� Integrated networks:

– Six 1.4 Gbit/s bidirectional ports for 3-dimensional torus network
connection

– Three 2.8 Gbit/s bidirectional ports to a collective network connection

– One gigabit network (ethernet) connection (active only on I/O nodes)

– One Joint Technical Advisory Group (JTAG) control and monitoring
network connection
 Chapter 2. Blue Gene/L architecture 27

– One barrier (global interrupt) network connection

The Blue Gene/L compute ASIC chip includes two non cache-coherent
microprocessors, each containing one single load/store unit, one single 32-bit
integer unit and one double Single-Instruction-Multiple-Data (SIMD) 64-bit FPU.
Each FPU can execute up to two multiply-adds per cycle, meaning that the peak
performance is eight 64-bit floating-point operations per cycle, resulting in 2.8
Gflops/s per core and 5.6 Flops/s per chip.

Figure 2-7 shows the different components of the Blue Gene/L Compute ASIC.

Note: The memory system is coherent (shared) only beyond the L1 caches.
The first-level (L1) cache is inside the PowerPC 440 embedded
microprocessor core. The PowerPC 440 microprocessor does not offer shared
memory support capability (it is not a true SMP implementation). The L2
cache has a snoop coherency mechanism and the L3 cache is shared
between the two processors, and is therefore coherent.
28 Unfolding the IBM ̂Blue Gene Solution

Figure 2-7 Blue Gene/L Compute ASIC

2.2.2 Blue Gene/L PowerPC 440 core overview
The PowerPC440 (PPC440) core is a flexible and powerful implementation of the
full 32-bit BOOK-E Enhanced PowerPC Architecture. The original design of the
PPC440 does not contain a floating point unit. Interfaces for custom
co-processors and floating point function are provided, along with separate
32KB/32KB instruction and data cache array interfaces. Figure 2-8 shows the
components of the PPC440 core. The relevant features of the core include:

� High-performance, dual-issue, superscalar 32-bit RISC CPU

� Seven stage, highly pipelined micro-architecture

� Dual instruction fetch per cycle, decode, and out-of-order issue

PLB (4:1)

“Double FPU”

Ethernet
Gbit

JTAG
Access

144 bit wide
DDR
256/512MB

JTAG

Gbit
Ethernet

440 CPU

440 CPU
I/O proc

L2

L2

Multiported
Shared
SRAM
Buffer

Torus

DDR
Control
with ECC

Shared
L3 directory
for EDRAM

Includes ECC

4MB
EDRAM

L3 Cache
or
Memory

6 out and
6 in, each at
1.4 Gbit/s link

256

256

1024+
144 ECC256

128

128

32k/32k L1

32k/32k L1

“Double FPU”

256

snoop

Collective

3 out and
3 in, each at
2.8 Gbit/s link

Global
Interrupt

4 global
barriers or
interrupts

128

5.5GB/s

2.7GB/s

11GB/s

22GB/s

PLB (4:1)

“Double FPU”

Ethernet
Gbit

JTAG
Access

144 bit wide
DDR
256/512MB

JTAG

Gbit
Ethernet

440 CPU

440 CPU
I/O proc

L2

L2

Multiported
Shared
SRAM
Buffer

Torus

DDR
Control
with ECC

Shared
L3 directory
for EDRAM

Includes ECC

4MB
EDRAM

L3 Cache
or
Memory

6 out and
6 in, each at
1.4 Gbit/s link

256

256

1024+
144 ECC256

128

128

32k/32k L1

32k/32k L1

“Double FPU”

256

snoop

Collective

3 out and
3 in, each at
2.8 Gbit/s link

Global
Interrupt

4 global
barriers or
interrupts

128

5.5GB/s

2.7GB/s

11GB/s

22GB/s
 Chapter 2. Blue Gene/L architecture 29

� Three independent execution pipelines:

– Combined complex integer, system, and branch pipeline

– Simple integer pipeline

– Load/store pipeline

� Dynamic branch prediction

� Single cycle multiply and multiple-accumulate

� Two replicated 6 port 32x32-bit General Purpose Register (GPR) files

� 32 KB instruction and 32KB data L1 caches

� 64-entry, fully associative unified translation look-aside buffer (TLB)

� Three independent 128-bit Processor Local Buses (PLBs) for instruction
reads, data reads, and data writes, running at half the processor speed

� 128-bit Auxiliary Processor Unit (APU), running at the processor speed

� 128-bit load/store interface supporting APU execution of floating point
instructions (direct access between APU and L1 data cache)

APU load and store instructions directly access the L1 cache, with operands of
up to one quadword (16 bytes) in length.

The instruction cache controller can make 32-byte line read requests through the
PLB instruction read interface, and can also present quadword burst read
requests for up to three lines (six quadwords), as part of its speculative line fill
mechanism. The 128-bit read and write PLB interface can make requests for
32-byte lines, as well as for 1-15 bytes within a 16-byte (quadword) aligned
region.
30 Unfolding the IBM ̂Blue Gene Solution

Figure 2-8 PowerPC 440 core and float point unit

2.2.3 Memory system overview
The first level (L1) cache is contained within the PowerPC 440 core. The
PowerPC 440 L1 cache is 64-way set associative. There is no coherence
between each core’s L1 cache.

The second level (L2R and L2W) caches, one dedicated per core, are 2KB in
size. They are fully associative and are coherent. Basically, they act as prefetch
and write-back buffers for L1 data. The L2 cache line is 128 bytes in size. Each
L2 cache is connected to one core through the Processor Local Buses (PLB) of
the PowerPC 440. The PLBs are128-bit wide. Each L2 cache has one
connection toward the L1 instruction cache running at full processor frequency,
and two connections toward the L1 data cache, one for the writes and one for the
loads, each running at half of the processor frequency.

The third level (L3) cache is 8-way set associative, 4 MB in size, with 128 byte
lines. Both banks can be accessed by both processor cores. Figure 2-9 shows
the L3 cache architecture. The L3 cache has three write queues and three read
queues, one for each processor core and one for the gigabit network. The last
one is only used on the I/O node. All the write queues go across a four line write
buffer to access EDRAM bank.

Instruction Cache
With parity

Data Cache
With parity

I-Cache Controller

IT
LB Load/Store Queues

D
TL

B

D-Cache Controller

MMU
64-bit

Entry with
parity

4K
BHT

Target
Address
Cache

Branch unit
Instruction Unit

Dispatch Dispatch

DCR Bus
JTAG
Debug
Trace

Clock
And

Power
Mgmt

Interrupt
And

Timers

GPR
file

Integer
Unit
(B)

Load /
Store
Unit

Integer
Unit
(A)
MAC

GPR
file

PLBPLB
Instruction Cache

With parity
Data Cache
With parity

I-Cache Controller

IT
LBI-Cache Controller

IT
LB Load/Store Queues

D
TL

B

D-Cache Controller

Load/Store Queues

D
TL

B

D-Cache Controller

MMU
64-bit

Entry with
parity

4K
BHT

Target
Address
Cache

Branch unit
Instruction Unit

Dispatch Dispatch

Target
Address
Cache

Branch unit

Target
Address
Cache

Branch unit
Instruction Unit

Dispatch Dispatch

DCR Bus
JTAG
Debug
Trace

Clock
And

Power
Mgmt

Interrupt
And

Timers

GPR
file

Integer
Unit
(B)

Load /
Store
Unit

Integer
Unit
(A)
MAC

Integer
Unit
(A)
MAC

GPR
file

PLBPLB

PPC 440

Double
Floating

Point
Unit

(FPU)

APU

FPU
 Chapter 2. Blue Gene/L architecture 31

Figure 2-9 L3 cache architecture

The SDRAM-DDR memory controller accesses 512 MB of DDR memory with a
128-bit data interface running at half the processor frequency (350MHz).

The multiported SRAM buffer of 16 KB acts as a high performance inter-
processor communication mechanism. Both processors have equal access to
the small SRAM (scratch pad). This shared small SRAM is critical for the efficient
exchange of network communication descriptors between the one-chip
processors (specially in co-processor mode).

For more details on the Blue Gene/L memory subsystem node refer to 6.1.8,
“Memory” on page 134.

Table 2-1 defines the characteristics of the Blue Gene/L Compute ASIC memory
system.

Table 2-1 Blue Gene/L Compute ASIC memory characteristics

Memory subsystem L1 cache
(per processor)

L2 cache
(per processor)

L3 cache
(Shared by both
processors)

Main Memory
(Shared by both
processors)

Size 32 KB (L1
instruction)
32 KB (L1 data)

2 KB 2 banks of 2 MB,
yielding 4 MB

512 MB

Line width 32 Bytes 128 Bytes 128 Bytes 128 Bytes
32 Unfolding the IBM ̂Blue Gene Solution

2.2.4 Double floating point unit overview
Th design of this unit is also known as Oedipus architecture.

Unlike POWER4™ or POWER5™ chips, the Blue Gene/L processor chip does
not provide two independent FPUs; instead, it provides a double SIMD FPU,
including parallel primary and secondary arithmetic pipes with its own 32 x 64-bit
floating point register (FPR) file.

The primary pipe executes the standard instructions and the SIMD instructions
while the second pipe only executes the SIMD instructions. The double FPU
implemented on Blue Gene/L chip offers more capabilities than a pure SIMD unit.
Some instructions cause two different operations to be performed in the two
pipes.

For example, the instructions allow efficient support for complex cross products.
Other instructions cause a single operation to occur on a single set of data. The
instruction set is given in Appendix C, “Floating point instruction set” on
page 341.

The results from the pipes are only written to the corresponding FPRs: primary
FPRs for the primary pipe, and secondary FPRs for the secondary pipe.
However, the cross micro architecture of FPU, illustrated in Figure 2-10, allows

Number of lines 1024 16 32768

Coherent No yes (weakly) yes yes

Associativity 64 way fully 8 way/bank
2 banks

NA

Latency
(in cycles)

3 11 28/36/40
(hit/miss
precharged/miss
busy)

86 (L3 cache
enabled)

Sustained bandwidth,
random quadLoad
access (Bytes/cycle)

NA NA 1.28/1.2
(hit/miss)

0.8/0.5
(single/dual
processor)

Sustained bandwidth,
sequential quadLoad
access (Bytes/cycle)

16 5.3 5.3/5.3
(hit/mis)

5.1/3.4
(single/dual
processor)

Memory subsystem L1 cache
(per processor)

L2 cache
(per processor)

L3 cache
(Shared by both
processors)

Main Memory
(Shared by both
processors)
 Chapter 2. Blue Gene/L architecture 33

the primary and secondary pipes to select primary FPR values or secondary
values.

Each pipe has five stages and can execute one multiply-add per cycle.

Although there are two sets of register files, they are not independent and share
address buses for each port. The secondary FPR is accessed with the same
addresses as the primary FPR. The optimal way to fill out the FPRs is to access
the operands in pairs, one primary and one secondary.

The Load/Store pipe of the double FPU makes full use of the quadword APU
interface. One load and store can provide two double-precision operands or two
single-precision operands, one for the primary and one for the secondary. The
memory accesses must be quadword aligned.

Figure 2-10 FPR cross architecture overview

Primary
Pipe

P0

FPR: Primary

P31

Secondary
Pipe

S0

FPR: Secondary

S31

Primary Scalar slide Secondary

Quadword Store data

Quadword Load data

5 stages arithmetic pipes
34 Unfolding the IBM ̂Blue Gene Solution

2.3 Blue Gene/L Software
This section describes the software stack (unique to BG/L) that runs on the
compute and I/O nodes, and also provides a short introduction to the Midplane
Management Control System (MMCS).

2.3.1 System software
The system software consists of the following two kernels:

� Compute node kernel - CNK (also known as the Blue Gene Runtime System
or BLRTS)

� I/O node kernel

Compute node kernel
The kernel that runs on the compute node is called the compute node kernel
(CNK). This is a small, simple kernel that provides a Linux-like run-time
environment, but it is IBM proprietary. It has a subset of the Linux system calls.
Most of those system calls are related to I/O, so you can open and close, read
and write, create directories and symbolic links, and so forth. For details see
Chapter 6, “Porting applications” on page 127.

The CNK has about 30 to 40 percent of the Linux system calls (for details, refer
to Chapter 2, “System calls supported by Compute Node Kernel” in the redbook
Blue Gene/L: Application Development, SG24-6745). This kernel is a single user,
single process run time and has no paging mechanism. The compute node
communicates to the outside world through the I/O node, so the executable
program is loaded from the I/O node through the collective network.

I/O node kernel
The kernel of the I/O node is also called the Mini-Control Program (MCP). It is a
port of the Linux Kernel, which means it is GPL/LGPL licensed. It has specific
patches for the Blue Gene Architecture, such as:

� Patches for Blue Gene/L
� New interrupt controller (BIC)
� Save-and-restore for dual FPU registers on context switch
� New memory layout
� New set of Device Control Registers (DCRs)
� Driver for new Ethernet macro (EMAC4 based on EMAC3)

The I/O service is provided to the compute nodes from the compute node I/O
daemon (CIOD), which is started by the initialization script during the boot
procedure of the MCP. CIOD is a user-level process that controls and services
 Chapter 2. Blue Gene/L architecture 35

applications in the compute node and interacts with the Midplane Management
and Control System(MMCS).

2.3.2 Management software
The Blue Gene/L management software is based on a a set of databases
running on the service node (database software is DB2).

Midplane Management Control System (MMCS)
Both Blue Gene/L hardware and software are controlled and managed by the
Midplane Management Control System (MMCS). The service node, front-end
nodes, and the file servers are not under the control of MMCS. MMCS currently
consists of several daemons which interact with a DB2 database running on the
service node.

Daemons
The three main daemons are idoproxydb, mmcs_db_server and ciodb. These
programs run on the service node and have the following functions:

� idoproxydb: Handles the communication to the cluster hardware

� mmcs_db_server: Manages the blocks (also known as partitions), handles
the requests from mmcs_db clients (mmcs_db_console, mmcs_db command
scripts or a job scheduler)

� ciodb: Detects the block when it is initialized and manages the job
submission request

For more details about the MMCS software refer to Chapter 11, “Midplane
Management Control System (MMCS)” in the redbook Blue Gene/L: Software
Installation, Configuration, and Administration, SG24-6744.

DB2 databases
There are four DB2 databases that interact with the MMCS on the service node.

� Configuration database: Records Blue Gene/L component location and
connectivity. Most items in this database relate to specific physical pieces of
hardware.

� Operational database: Records partitions, job status, and events related to
ongoing Blue Gene/L system activity. Although called one of the four
databases, the operational database is actually part of the configuration
database.

� Environmental database: Records periodic readings of voltage levels,
switch settings, and sensors.
36 Unfolding the IBM ̂Blue Gene Solution

� Reliability, Availability, Serviceability (RAS) database: Records both software-
and hardware-related errors. It is the RAS database that is most closely
watched by system administrators keeping an eye on the overall system
health.
 Chapter 2. Blue Gene/L architecture 37

38 Unfolding the IBM ̂Blue Gene Solution

Chapter 3. Planning and sizing
guidelines

This chapter provides general guidelines for designing the environment around
an IBM Eserver Blue Gene Solution, such as:

� Service node and front-end nodes

� Sizing – network considerations

� File system configuration

3

© Copyright IBM Corp. 2005. All rights reserved. 39

3.1 Introduction to Blue Gene/L architecture
Figure 3-1 shows an overview of the components of a Blue Gene/L system. An
introduction to the components is provided in 2.1.2, “Blue Gene/L environment”
on page 16.

Figure 3-1 Blue Gene/L System Architecture

This chapter presents general guidelines which apply to all Blue Gene/L
installations.

3.1.1 Compute nodes and I/O nodes
Within Blue Gene/L racks, the system is composed of two types of nodes:
compute nodes, and input/output (I/O) nodes. The compute nodes are dedicated
to running the user’s application, while the I/O nodes are dedicated as the proxy
for performing the input and output operations through the assigned file system.

Reminder: A formal set of documents is provided for each Blue Gene/L
installation - a Statement Of Work (SOW) - which may in fact comprise
multiple documents. This SOW is the formal statement from IBM of what is
required for a specific Blue Gene/L installation, and should be considered as
authoritative for that specific installation.

BlueGene/L System Architecture

Functional
Gigabit

Ethernet

Functional
Gigabit

Ethernet

I/O Node 0

Linux

ciod

C-Node 0

CNK

I/O Node 1023

Linux

ciod

C-Node 0

CNK

C-Node 63

CNK

C-Node 63

CNK

Control
Gigabit

Ethernet

Control
Gigabit

Ethernet

IDo chip

LoadLeveler

System
Console

CMCS

JTAG

torus

tree

DB2

Front-end
Nodes

Pset 1023

Pset 0

I2C

File
Servers

fs client

fs client

Service Node

app app

appapp
40 Unfolding the IBM ̂Blue Gene Solution

The compute node kernel contains stubs of I/O calls, and these stubs forward the
I/O calls from the compute node stub to the I/O node assigned to that compute
node. This allows for offloading some of the work for the compute nodes, frees
up more memory for use by the user application in the compute nodes, and
reduces the memory requirement of the compute node kernel itself.

Compute node modes
The compute nodes are, in fact, implemented as a pair of CPUs on a single chip,
with 512 MB of dedicated RAM in which the user’s application runs. The compute
nodes may be configured at boot time in one of following ways:

� Virtual node mode (VN)

This configuration uses both CPUs separately, running a different process of
the user’s application on each processor. In this mode, the 512 MB memory is
split between the two processors, giving each processor effectively 256 MB of
memory for the compute node kernel and user application. Each processor
also handles its own I/O interactions for messages and the file system I/O
stubs.

� Co-processor node mode (CO)

This configuration uses the secondary CPU as an offload coprocessor for
processing the I/O of the main CPU. This reduces the burden on the main
CPU, and frees up additional memory for the user application since the 512
MB of memory does not need to be divided as in virtual node mode. In
co-processor node mode, the second CPU will not handle any file-based I/O,
only application messaging, after the primary CPU starts.

� Hybrid node mode

This is a (non-default) configuration created by the programmer. It is also
sometimes referred to as Communication Coprocessor Mode with
Computation Offload (CO), and in this mode, the secondary processor
functions as both an I/O coprocessor and a user application processor. This
mode is of use for those programmers who don’t mind coding the application
to work with both processors on the chip, and the details that go with
performing such a task (details like catering to the lack of L1 cache coherence
between the two processors in order to wring out the last 2 to 4 percent of
speed possible in the Blue Gene/L system). Benefits here will be
code-dependent in addition developer-dependent.
 Chapter 3. Planning and sizing guidelines 41

Choosing one of the three configuration modes can affect the I/O of the partition,
depending on the application, and certainly affects the messaging capability.

I/O nodes
The input/output (I/O) nodes are very similar to the compute nodes. They also
consist of a pair of CPUs, additional chips, memory, and gigabit Ethernet
connections. In fact, the CPUs on the I/O node are the same as the ones used in
the compute nodes. The I/O node runs a different kernel than the compute
nodes, one that allows for file I/O (with a remote file system). The I/O node is the
file system proxy for the compute nodes, the place where all the file system
interaction is forwarded to and from the compute nodes.

3.1.2 Compute node to I/O node ratio
Since the I/O nodes are the only method Blue Gene/L partitions can use to
communicate with the outside world, the ratio of I/O nodes to compute nodes
should be considered in the context of the user applications I/O and the overall
configuration of a Blue Gene/L system. Each node card can have up to two I/O
nodes, but you do not need to use all these nodes for performing I/O operations.
This means that you can use one I/O cards per eight compute nodes (8-to-1
ratio), or you can use a reduced number of I/O nodes for a larger number of
compute nodes, up to a ratio of 64-to-1.

The currently allowable ratios are: 8-to-1, 16-to-1, 32-to-1, and 64-to-1.

Note: Hybrid node mode was used in the configuration for the Linpack run
that scored 70.72 Tflop/s to bring Blue Gene/L to the top of the “Top 500
Super Computer List” in November, 2004.

This mode was used because a performance improvement of 2 to 4 percent
over virtual node mode was observed, and a 4 percent performance
improvement equates to approximately the total performance of the 66th
system on that list (roughly 3 Tflops).

Although 4 percent may seem like a small number (because of the enormous
capability of Blue Gene/L), the actual coding effort could be justified since the
same absolute performance increase obtainable by adding additional
hardware is much more expensive, and increases complexity and power
consumption.

Restriction: The following information shows a 128-to-1 configuration ratio as
well. Although technically possible, this may not be supported by IBM, and has
only been used in internal test environments.
42 Unfolding the IBM ̂Blue Gene Solution

Table 3-1 shows the measured I/O read and write performance per I/O node in
Blue Gene/L racks configured with different ratios of I/O to compute nodes.

Table 3-1 I/O-to-compute node ratio reads and writes estimates

In the Blue Gene/L software driver version available at the time of testing, there
was very little difference in the write speeds between the different configurations,
generally about 5 percent. However, when it comes to reading speeds, the ratio
of I/O to compute nodes may have a dramatic effect (our results ranged from 36
to 64 MB/sec.). And while it may appear the system plateaus out in the midrange
ratio, keep in mind that with each reduction in ratio, the available bandwidth per
compute nodes doubles, so the ratio chosen should be tuned for the application.

The I/O infrastructure should support the required aggregated bandwidth,
otherwise the Blue Gene/L I/O performance may suffer. For example, if we
assume a constant of 74MB/sec per I/O node, then a full Blue Gene/L Rack of
1024 compute nodes and 128 I/O nodes could generate a potential peak of

Note: While we would have liked to include some I/O benchmark numbers in
this redbook, at the time of this writing the system was still undergoing
software changes. Thus the data that follows should be considered as only a
general guideline.

Ratio Writing Reading

128-to-1 71 MB/sec 36 MB/sec

64-to-1 66 MB/sec 58 MB/sec

32-to-1 Unavailable at time of writing,
estimated at 74 MB/sec

Unavailable at time of writing,
estimated at 64 MB/sec

16-to1 Unavailable at time of writing,
estimated at 74 MB/sec

Unavailable at time of writing,
estimated at 64 MB/sec

8-to-1 74 MB/sec 64 MB/sec

Note: At the time of this writing not all configurations were available for
testing, and work was still being performed on the system. Results here are
simply a snapshot in time, and provided just as an aid to the reader.

Additionally, these configurations where tested using NFS, because GPFS
was unavailable for testing at the time.

In these test cases, we used a dedicated file system per I/O node for testing.
 Chapter 3. Planning and sizing guidelines 43

9472MB/sec bandwidth (128 I/O nodes * 74MB/sec.). The good news here is that
each I/O node has it own Ethernet cable, simplifying network load distribution.

3.1.3 Building blocks for scalable I/O
Blue Gene/L can potentially demand large amounts of both peak and sustained
I/O per rack, depending on the application, and this should be planned for. The
planning should include not only the type of file system used, but also network
switches and file servers, as well as any load external to Blue Gene/L that will be
placed on the same I/O system. The recommended file system for Blue Gene/L
is the GPFS file system, and the recommendations here use that assumption.

File server operating system
The file system needs to have a number of file servers, and if these servers are
used for implementing a GPFS file system, the operating systems must be either
AIX or Linux. Even though the GPFS implementation we used for testing was a
very basic one, it is important to have scalable performance, high reliability, and
multi-NFS-export capabilities.

File system server hardware
The system hardware requirement will vary depending on your bandwidth (you
need enough CPU to drive the network and the storage traffic) and reliability
requirements. One rule of thumb for sizing the amount of CPU needed for driving
the bandwidth is about 1GHz per 100MB per second throughput (this is a very
rough estimate, and your actual performance may vary significantly). Two solid
systems we recommend as NFS (or NSD in the case of GPFS) servers are the
IBM eServer pSeries 550 or OpenPOWER 720. Ideally, these should be paired
for redundancy.

Storage
For the storage system, you need to size both the capacity (amount of storage
needed) and the sustained aggregated throughput for the targeted applications.
The system should include redundancy to help protect against hardware and
environment outages. Choices for storage subsystems include the IBM DS4500
and DS4000 storage servers. For example, if you need 1200 MB/sec GPFS
storage throughput, you need to use at least four DS4500 subsystems (each can
sustain 300MB/second GPFS bandwidth).

Network
In addition to the storage requirements, matching network bandwidth is required
to sustain the I/O for the Blue Gene/L system. Thus you may consider multiple
gigabit Ethernet links for each file system server; otherwise, the bottleneck will
44 Unfolding the IBM ̂Blue Gene Solution

become the network bandwidth into the file system servers rather than the
performance limit of the servers and the storage.

A sample environment is shown in Figure 3-2.

Figure 3-2 Building block for I/O subsystem

3.2 Service node and front end nodes
In this section we describe the hardware, operating system, and software
requirements for each type of node.

The current version of the Blue Gene/L system firmware requires the service
node (SN) to be operating and reachable at all times. If an interruption of service
occurs for the Blue Gene/L service node, the Blue Gene/L partitions become
effectively useless, and any work performed on them (and not previously

DS4000-EXP700
(one or more; RAID5 4+P)

DS4500 (FAStT900)

SAN32B-2

Cisco 6500 GigE

4way p5-550 / op-720
(plus 7311-D20 drawer)

4 x FC

4 x FC 4 x FC

4 x FC

6 x GigE

4way p5-550 / op-720
(plus 7311-D20 drawer)

6 x GigE

Note: In Chapter 2, “Blue Gene/L architecture” on page 13 we describe in
more detail the architecture of Blue Gene/L. Some of the topics are shown
again in this section for clarity.
 Chapter 3. Planning and sizing guidelines 45

checkpointed) is lost. This version of Blue Gene/L system depends on the
reliability of the service node.

The current version of the Blue Gene/L system firmware does not allow the use
of more than one service node in a single Blue Gene/L system. This means the
service node is effectively a single point of failure.

The front end nodes (FEN) are the point of entry for end users to the Blue
Gene/L system. Users log on to a front end node, and compile programs and
submit jobs from this node. The operation of the Blue Gene/L system does not
depend on the front end nodes, but the performance and availability of the front
end nodes will be directly visible to the system’s users.

The service node and front end nodes all run a Linux operating system on 64-bit
PowerPC hardware (the current implementation is on SUSE Linux Enterprise
Server 9).

3.2.1 Hardware planning
This section describes the hardware requirements for the service and front end
nodes.

Service node
The service node currently runs on either POWER4 or POWER5 hardware.

For a Blue Gene/L system comprising between one and four racks, the
guidelines for the service node are that it include at least:

� Two processors or more; a uniprocessor system is not recommended

� For a given pSeries model, the fastest processor speed available

� 32 GB of memory

� 146 GB of available disk storage in addition to the disks used for storing and
booting the operating system

� Two 10/100 Ethernet adapters

� Two 10/100/1000 Ethernet adapters

The service node can run in a logical partition of a POWER4 pSeries server or
can run in full SMP mode. LPAR mode allows the server hardware to be shared

Note: Refer to the formal “Statement Of Work Schedule A - Hardware
Deliverables” for precise specifications of the hardware requirements for a
specific installation.
46 Unfolding the IBM ̂Blue Gene Solution

between multiple operating system images, and one possibility would be to run
the service node and the front end nodes in two LPARs on a single server such
as a p650, p670 or p690.

Other considerations for the service node
� If the hardware is dedicated to the service node, the service node can run in

full SMP mode (not in LPAR mode), and depending on the server hardware
chosen, a Hardware Management Console may not be needed.

� If no HMC is provided, some kind of terminal and keyboard will probably be
required to install the Linux operating system. Once the operating system is
installed, the service node can be accessed and controlled via a network
connection.

� If you are going to use LPAR, then we strongly recommend a rack-mounted
HMC. This HMC is only one 19” EIA unit in size and can be installed in the
same rack as the service node (depending on the pSeries model). There is
also a rack-mounted keyboard/display kit available for the HMC which can be
used as a single rack keyboard/display for the pSeries servers mounted in the
rack as well (using a keyboard video mouse or KVM switch).

POWER5
There are two basic POWER5 systems which can be considered:

� For a small Blue Gene/L system comprising a single rack, the OpenPower720
system with four processors is a good solution.

� For larger Blue Gene/L systems, the p5-570 provides an expandable platform
(up to 16-way, but starting off as a 4-way system).

Front end nodes

Like the service node, the front end nodes run Linux on pSeries hardware; in this
implementation they run SUSE Linux Enterprise Server 9 (SLES 9).

Multiple front end nodes can be installed. The front end nodes are used directly
by users of the Blue Gene/L system. More than one front end node can be
provided if a single front end node is not powerful enough to support the
anticipated user load. There is no automatic load balancing or failover capability
provided with multiple front end nodes, although an external network load
balancer could be used to spread user load across multiple front end nodes.

Note: The plural “nodes” is used here because one front end node can be
attached to a Blue Gene/L system, but using a single front end node is
perfectly acceptable and may prove to be a better choice.
 Chapter 3. Planning and sizing guidelines 47

There is a much lower minimum capability requirement for a front end node
compared to the requirement for the service node. A Blue Gene/L system can
have a single front end node with sufficient capacity for all the users at the same
time, or multiple front end nodes with the user load shared across the front end
nodes in some way.

Many of the early Blue Gene/L systems have used IBM eServer BladeCenter®
JS20 systems as front end nodes. These systems are dual CPU PPC970
processor blades that are housed in 7-U rack enclosures.

This configuration choice should not be taken as prescriptive. Having more than
one front end node is only required if a single node is not capable of handling the
expected user load by itself, and having more than one front end node increases
the work of the systems administrator.

The front end nodes need network connectivity to a shared file system, which will
also be used by the Blue Gene/L system.

Figure 3-1 on page 40 shows a logical picture of the components of a Blue
Gene/L system. It would be perfectly possible for the separate external
components—service node, front end nodes, and file server nodes—to have a
physical implementation in a single server. With this in mind, the hardware for
the front end nodes can be selected in two different ways: using the same
hardware as the service node, and using separate hardware from the service
node. These choices are described in the following sections.

Same hardware as the service node
The simplest configuration is to use a single server for both the service node and
the front end node and use logical partitioning to construct two separate server
instances running on a single server.

Size the server as the sum of the requirements of the service node and front end
node.

For a combined front end node and service node a single unit (p650, p570, and
so forth) or server with a split SCSI backplane and external HMC could be used:
this system has 7 available PCI-X adapter slots and each partition can be
configured with a 4-port 10/100 Ethernet adapter and a 2-port 10/100/1000
adapter to satisfy the network connectivity requirements of the server. Using the
split SCSI backplane allows two separate logical partitions to boot from different
internal disks.

Once the service node is supported on the SLES 9 platform, as well as the front
end nodes, the choice of hardware for a common single server platform
increases. A single p5-570 system will be a good single platform because it is
48 Unfolding the IBM ̂Blue Gene Solution

capable of expansion if the user load grows, or a p5-550 system may be a more
economical choice.

Separate hardware from the service node
This configuration option increases the work of the systems administrator but
allows alternative hardware platforms to be used for the front end nodes.

In addition to the hardware platforms already identified for the service node, the
front end nodes can run on any other system which supports the ppc64 SUSE
Linux Enterprise Server 9 (SLES 9) operating platform, and this means
additionally:

� POWER5-based pSeries servers including both Open Power™ and p5
systems. The OpenPower 720 system with two processors would be a good
starting point, and can be configured with four processors if user growth is
anticipated.

� JS-20 BladeCenter systems, which are based on the POWERPC970
processor.

One initial installation based on JS20 blade systems has been configured
with 4GB memory per node, so if the approach of using separate hardware
from the service node for front end nodes is chosen, then each front end node
should have this amount of memory at minimum.

It is obviously possible to implement a number of front end nodes in a
BladeCenter rack of JS-20 blade servers, and many Blue Gene/L installations
have chosen to do this. It is worth noting that this implementation decision is not
mandatory, and the other options discussed in this chapter may prove more
suitable to a specific Blue Gene/L system installation.

Don’t forget the rack
The service node and front end nodes will probably be rack-mounted models and
therefore a rack needs to be provided for them.

Note: The front end nodes cannot run all platforms which are supported by
SLES 9, they must run on POWER4, POWER5, or POWERPC970
processors.

Note: Although JS20 blades can be used as front end nodes, the limited I/O
capabilities they provide require special attention during installation and
configuration; thus, we recommend that you chose these systems only as an
alternate solution.
 Chapter 3. Planning and sizing guidelines 49

If multiple systems are provided, can they be installed in the same rack? It might
sound obvious, but even if the systems have the same 19” form factor, are there
sufficient power distribution units (PDUs) of the correct type available in the
rack? The IBM BladeCenter uses a different rack type and model, with different
PDUs, from the pSeries rack. If you plan on using different server types, it may
be necessary to plan for additional PDUs or alternative power cables if you want
to fit all the servers in a single rack. If you don’t consider this aspect you run the
risk of turning up at a customer site on the day of installation and discovering that
it is not possible to install and power all the components necessary for the
system.

Firmware
Be sure to check the required firmware level for each service node server and
each front end node server to ensure that it matches the minimum necessary
level of firmware for Blue Gene/L systems.

Early experience with Blue Gene/L systems using JS20 blade servers as front
end nodes required a firmware update for supporting the Linux (SLES 9) to be
installed.

3.2.2 Operating system
If either the service node or the front end nodes are to be implemented on a
POWER4 p655 platform, special attention needs to be given to the method of
installing the operating system for the first time because there is no internal
CD-ROM drive on the p655. An external network install server will need to be
provided in this case, specifically AIX NIM or SUSE Yast installation server.
Once the operating system has been installed it will be possible to configure
addresses on the network adapters and further work can proceed in the same
way as for any other type of server, except that of course there is still no
CD-ROM drive and the install media will still have to be accessed across the
network in some way.

Specific considerations apply to the service node and to the front end nodes, as
explained in the following sections.

Note: Check the SOW documentation provided for your system and also any
other specific operating systems and hardware requirements at the time of
installation. Refer to:

http://www-1.ibm.com/servers/eserver/support/pseries/index.html
http://www-1.ibm.com/servers/eserver/support/openpower/index.html
50 Unfolding the IBM ̂Blue Gene Solution

Service node
Current implementation (at the time of writing this redbook) supports SUSE Linux
Enterprise Server 9 (SLES 9), Service Pack 1 or later.

This software and its associated support contract need to be obtained
separately; neither is included as part of the Blue Gene/L product shipped by
IBM.

IBM provides the operating system kernels for the Blue Gene/L nodes as part of
the BlueGene/L driver, and this software is installed on the service node because
this code is downloaded into the Blue Gene/L nodes when the partition they are
members of is started.

Front end nodes
SUSE Linux Enterprise Server 9 (SLES 9) Service Pack 1or later.

As for the Service Node, this software and an associated support contract need
to be obtained prior to implementation.

SLES 9 will run on POWER4, POWER5, and POWERPC970 (OpenPOWER)
hardware.

3.2.3 Software
Additional software needs to be obtained separately for both the service node
and for the front end nodes, and in many cases this means purchasing licensed
software and software maintenance agreements. The reason for stressing this
point is, again, that the IBM installation team will expect this software to be
available at installation time.

The service node needs different software to be installed on it than the front end
nodes. The levels of code specified in this section are current as of 06/30/2005,
but the “Statement of Work” documentation associated with a specific Blue
Gene/L implementation should be treated as authoritative on the code levels
required for that particular installation.

The front end nodes are used to compile code for Blue Gene/L. This requires all
the compilers plus libraries applicable to Blue Gene/L to be available on the front
end nodes.

Service node
Software which needs a formal license agreement
� DB2 UDB Enterprise Server V8.1 with Fixpack 7 or DB2 Enterprise Server

V8.2
 Chapter 3. Planning and sizing guidelines 51

� IBM Loadleveler (optional)

Software which does not need a formal license agreement
� Java™ Runtime JRE 1.4.1 (This is actually bundled with SLES 9, so it does

not need to be obtained separately; just make sure the correct version is
installed.)

� Python V2.3 or later

Front end nodes
Software which needs a formal license agreement
� IBM compilers: XL Fortran and XL C/C++ for Linux

Blue Gene/L versions of the libraries will be supplied and installed separately.

� IBM DB2 UDB Enterprise Server client: Delivered as part of the DB2 UDB
Server product required for the service node.

� IBM Engineering and Scientific Subroutine Libraries (ESSL): Currently under
development, so no formal product such as “ESSL for Blue Gene/L” exists
today, but once it is formally released as a product it will need to be
purchased separately.

� IBM LoadLeveler (optional).

� Etnus TotalView debugger (optional).

� UPC/CEPBA Paraver visualization tool (optional).

Software which does not need a formal license agreement
� MPI library (MPICH2) V0.971

� Java Runtime JRE 1.4.1 (Optional on front end nodes, this is actually bundled
with SLES 9 so it does not need to be obtained separately; just make sure the
correct version is installed.)

� GNU Toolchain (glibc, gcc, binutils, gdb)

� Mathematical Acceleration Subsystem (MASS) libraries

IBM Eserver Blue Gene Solution software
Software which needs some kind of formal license agreement
� IBM General Parallel File System (GPFS) (This is optional, and not currently

supported.) GPFS client code will run on the I/O nodes.

Software which does not need a formal license agreement
� The Compute Node Kernel (CNK) for the Blue Gene/L compute nodes and

Linux Kernel for the Blue Gene/L I/O nodes, which will be installed across the
network from the Service Node when a Blue Gene/L partition is booted.
52 Unfolding the IBM ̂Blue Gene Solution

3.3 Network sizing considerations
Blue Gene/L requires two Ethernet networks, both of which are shown in
Figure 3-1 on page 40. A single network switch could be used to provide the
hardware for both networks, with a simple logical isolation approach such as
port-based Virtual LANs (VLANs) being used to separate the two networks inside
the single switch.

3.3.1 Functional network
When a user job is running on a Blue Gene/L partition, the only communication
path to anything outside the Blue Gene/L rack uses the functional network.

In particular, this network is used for all file system I/O because there are no
disks installed inside the Blue Gene/L rack.

All connections to the functional network are gigabit Ethernet connections using
copper cables: 1000Base-T using Cat.6 cabling.

The functional network needs to provide connections for the following equipment:

� One connection for each I/O node in the Blue Gene/L rack; the default
configuration is for 128 I/O nodes to be installed in every rack.

� One connection for each front end node.

� One connection for the service node.

� One or more connections to each file server. Figure 3-2 on page 45 shows a
possible configuration in which six parallel gigabit Ethernet links are provided
to each file server, configured as a logical single link using an aggregation
technique (EtherChannel, or some kind of link aggregation).

� One or more external network connections, for which it may also be
appropriate to provide a dedicated network firewall.

Network switch performance
There are two basic types of Gigabit Ethernet switches available today: blocking
and non-blocking switches.

Blocking switches are cheaper than non-blocking switches because they are
designed to be able to handle an average network load spread across multiple
ports.

Non-blocking switches are more expensive because they are designed to be
able to handle the maximum network load on every port simultaneously.

This difference also applies to line cards installed in a switch chassis.
 Chapter 3. Planning and sizing guidelines 53

Blocking switches are suitable for collections of workstations that typically
generate I/O requests at different times. This characteristic does not apply to
Blue Gene/L, which will typically generate multiple simultaneous I/O requests
from all its I/O nodes. The configuration of a network switch for the functional
network needs to take this into account.

For example, Cisco provides a 48-port 10/100/1000BASE-T line card
(WS-X4448-GB-RJ45), which can connect to 48 Blue Gene/L I/O nodes
simultaneously. It needs to be understood that this particular card provides total
networking capacity of 12GBps, or 6GBps full-duplex capacity. If all I/O nodes
were working at full capacity they would require a total of 48GBps full-duplex
capacity, in other words 8 times the capability of the line card.

Equally, in a modular switch such as the Cisco 4000/4500 series, the total
capacity of the switch may be less than the total number of ports might imply: a
single switch can support up to 240 ports of 10/100/1000BASE-T, but the total
capacity of the switch is 64 Gbps.

This means it may be necessary to use more switches, or change to more
expensive non-blocking switches, to cater for the peak bandwidth required
between the Blue Gene/L I/O nodes and the file system infrastructure. Port
density alone may not be the only criterion here: a single switch with provision for
240 ports may provide the necessary connectivity for the Blue Gene/L I/O nodes,
but may act as a bottleneck to effective performance.

Jumbo frames
If possible, jumbo frames should be used across the functional network. This
allows the Maximum Transmission Unit (MTU) for Ethernet frames to be
increased from the default value of 1500 bytes to 9000 bytes. There are
implementation considerations here, since not all Gigabit Ethernet network
interface cards support this extension to the standard, hence the caveat if
possible.

3.3.2 Control (service) network
The control network is used for the service node to communicate with the service
components of each Blue Gene/L rack.

The current implementation of the Service Node requires only 10/100 Ethernet
ports, and needs connections to be made in two different ways:

1. To the first node only in a row of nodes, to the iDo network

2. To every separate midplane in the row of code
54 Unfolding the IBM ̂Blue Gene Solution

Thus, for a row of n Blue Gene/L racks, 2n+1 10/100 Ethernet connections need
to be made, as shown in Figure 3-3.

Figure 3-3 Service network connections for a single row of Blue Gene/L racks

For planning purposes, this is the current configuration recommended, and
therefore enough 10/100 network switch ports should be provided to satisfy this
requirement.

A simpler network configuration has been used in the past, and may be possible
again in the future, in which fewer network connections need to be provided. In
this configuration, for each row of Blue Gene/L racks only two connections need
to be made:

1. A 10/100 connection for the iDo network, as described previously

2. A single 10/100/1000 connection

This configuration is shown in Figure 3-4.

Note: The iDo network is in fact just an Ethernet network used for hardware
control. In each service card there is a conversion chip, which converts from
Ethernet to JTAG. The JTAG network is used for loading the kernels on the
nodes (I/O, compute) at the time a partition is booted. The JTAG network is
also used for controlling and collecting (monitoring) information about the HW.

Service
Node

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

Ethernet
Switch

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00
 Chapter 3. Planning and sizing guidelines 55

Figure 3-4 Simpler Control Network configuration for a row of Blue Gene/L racks

The bandwidth requirements for the service network are not great, and relatively
simple networking equipment can be used for the purpose. However, it is likely
that for many configurations, using the same physical hardware as the network
switch provided for the functional network will make sense.

3.4 File system configuration
The Blue Gene/L hardware has no disk subsystem of its own, and has been
designed as a stateless system so that the nodes in a partition are fully
operational once they have booted. All information about the state of the Blue
Gene/L system is stored in the service node.

To make Blue Gene/L an operational system, some kind of common file system
needs to be provided. This file system is accessed from the front end nodes and
is used for storage of source code and for saving the executable files that result
from the compilation process that takes place on the front end nodes.

When jobs run on Blue Gene/L, the I/O nodes have access to the same common
file system and load the executable files across the Functional Network into the
compute nodes. The file system is then used for writing results of the
computation that takes place on the Blue Gene/L system.

Service
Node

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

Ethernet
Switch

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

10
0

10
/1

00

10
/1

00

10
00

10
00

Note: By convention, this common file system is mounted as /bgl on the front
end nodes and on the Blue Gene/L nodes.
56 Unfolding the IBM ̂Blue Gene Solution

For the current implementation, the I/O node operating system only supports
NFS client access to the common file system, thus the file servers should provide
an NFS export of a local or a GPFS file system. Future releases will include in
the I/O node embedded Linux a GPFS client. We will describe some of the
possible approaches, starting with the simplest approach.

3.4.1 I/O servers
A single Blue Gene/L rack contains up to 128 I/O nodes, each of which has a
gigabit Ethernet connection into the functional network. Whether all of these I/O
nodes are used depends on the code running on the Blue Gene/L compute
nodes, but this means that there is the theoretical possibility of a single Blue
Gene/L rack generating I/O requests of between 1GBps and 10GBps (and that’s
gigabytes per second, not gigabits per second).

To reach the theoretical limit requires code that performs intensive I/O operations
in a manner that spreads the I/O workload across all available I/O nodes, and
this is by no means simple. Later in this book we discuss strategies for increasing
I/O throughput, but the code modification necessary may not be accomplished
quickly or easily.

It is vital to provide I/O servers that attach to the Blue Gene/L functional network
so that their capability matches the requirements of the code running on the Blue
Gene/L system.

For some codes, a single NFS server may be sufficient, and will certainly meet
the functional requirement of the Blue Gene/L system.

However, a single NFS server using a single gigabit Ethernet connection will be
limited to I/O performance of 60MBps at maximum, and this sort of figure has
been measured in performance tests.

Since the theoretical limit of aggregate I/O capability by a single Blue Gene/L
rack exceeds this single NFS server capability by many orders of magnitude, a
single NFS server could represent a significant bottleneck to overall Blue Gene/L
system performance.

The solution to this bottleneck is to provide more than one I/O server.
 Chapter 3. Planning and sizing guidelines 57

3.4.2 NFS
The only method of implementing a shared parallel file system today on Blue
Gene/L is by providing an NFS server attached to the functional network. The
Blue Gene/L I/O nodes are booted with a Linux kernel that includes an NFS client
capability, and the I/O nodes issue an NFS mount command when they start up to
attach to the shared file system.

By convention, the shared file system is mounted on the Blue Gene/L nodes and
front end nodes at the /bgl mount point. Adhering to this convention makes it
easier to understand someone else’s Blue Gene/L system, but it is not
mandatory.

It may be a requirement of a particular Blue Gene/L implementation that the front
end nodes and I/O nodes connect to an existing NFS shared file system. This is
certainly possible.

Alternatively, it may be necessary to provide a new NFS server as part of a new
Blue Gene/L system implementation.

The simplest approach would be to provide a single NFS server, and to
implement this server on the service node if possible. There’s nothing to prevent
an Intel-based Linux server with IDE disks being used for this purpose either,
since the functional requirement is satisfied, but this sort of approach may be
unwise in the long term because such servers may not be reliable enough and
may not perform well enough as usage of the Blue Gene/L system increases.

Over time, however, a single NFS server may be an unacceptable bottleneck to
system performance. With this approach, all the I/O nodes in the Blue Gene/L
system will access the same server, and quite possibly at the same time. Codes

Important: It’s important when discussing I/O performance and capability to
differentiate between the Blue Gene/L rack and the Blue Gene/L system as a
whole. A single Blue Gene/L rack is capable of very high levels of I/O
performance, but if the Blue Gene/L rack is not matched with an equally high
performance I/O subsystem then the total system’s I/O performance may not
be good and may not meet expectations.

So, saying that Blue Gene/L is not suited to applications which need high
levels of I/O performance is incorrect, but one particular instance of a Blue
Gene/L system implementation may not be suitable for applications which
need high levels of I/O performance if the system as a whole is not configured
for these levels of performance.
58 Unfolding the IBM ̂Blue Gene Solution

that perform large amounts of file system I/O during their execution will find their
performance limited by a bottleneck such as this.

GPFS is one solution to this I/O scaling problem, but we must be clear about
exactly what GPFS means here. In the current version of the Blue Gene/L
system, no GPFS client support is available on the Blue Gene/L I/O nodes, only
an NFS client. Therefore, an NFS client/server layer is still required. The
bottleneck of a single NFS server can be overcome by running a GPFS file
system, but having the GPFS server nodes export the GPFS file system over
NFS. In this environment, shown in Figure 3-5, NFS is still used across the
functional network, but now there is no single NFS server bottleneck. In fact, with
this configuration, all I/O nodes mounting the NFS file system exported via
multiple NFS servers access the same file space.

Figure 3-5 Today’s implementation using GPFS to allow multiple NFS servers

Figure 3-5 shows one possible implementation of GPFS using a SAN fabric and
NSD (Network Shared Disk) server nodes. In reality, any implementation of
GPFS is possible, and the implementation detail may be actually determined by
the file access pattern (multiple files with no concurrent access versus a reduced
number of relatively large files with concurrent access). You need to understand
the specifics of your application file I/O requirements and match these with the

2

IBM Research

Blue Gene/L © 2004 IBM Corpo

DISK DISKDISK DISK

I/ O I/ O I/ O I/ O I/ O I/ O I/ O I/ O I/ O

Ethernet fabric

NSD/ NFS NSD/ NFS NSD/ NFS NSD/ NFS NSD/ NFS

SAN fabric

NFS client running on Blue Gene I/O nodes
 Chapter 3. Planning and sizing guidelines 59

proper GPFS configuration, because NFS is not able to provide any locking
between NFS instances running on different nodes.

3.4.3 GPFS
IBM is currently developing a GPFS client implementation for the Blue Gene/L
I/O nodes. When available, this will allow NFS to be eliminated from the Blue
Gene/L environment if desired, although it may be reasonable to continue to use
NFS for the connections from the front end nodes to the I/O subsystem for
specific applications.

This will allow a scalable storage system to be connected directly to the Blue
Gene/L system’s I/O nodes and eliminate many of the scaling, performance, and
reliability issues inherent with NFS.

The ideal GPFS environment shown in the Figure 3-6 differs only in that the NFS
layer has been removed. GPFS still runs across the functional Ethernet network
simply because there is no alternative: this network is the only method the Blue
Gene/L I/O nodes can use to communicate with anything outside the Blue
Gene/L system itself. Each I/O node has its own Gigabit Ethernet connection, so
the aggregate performance if all I/O nodes are running in parallel and using
GPFS NSD server nodes in parallel can be very much better than before.

Note: As it can be seen in Figure 3-5, the Blue Gene/L I/O nodes have to
connect to different NFS servers, so they have to issue different mount
commands when they are initialized. The boot scripts that control the behavior
of the I/O nodes are stored on the service node and can be customized to
meet this requirement; a customized boot script would be installed in
/bgl/dist/etc/rc.d/rc3.d/S10sitefs. Instructions for this customization is
provided to customers in the ionode.README file.

Note: A GPFS client for the Blue Gene/L I/O nodes is planned to be available
in 4Q/2005. The I/O nodes do not run a standard implementation of Linux and
therefore the existing GPFS client for Linux will not run on the Blue Gene/L I/O
nodes without modification and testing.
60 Unfolding the IBM ̂Blue Gene Solution

Figure 3-6 How Blue Gene/L will ultimately be able to use GPFS directly

Since GPFS is an IBM Licensed Program Product (LPP), if GPFS is to be used in
either of the modes illustrated in Figure 3-5 and Figure 3-6 then a license and
support agreement will be needed as well as a copy of the code. This is true
regardless of the operating system on which GPFS runs, meaning this applies to
GPFS for Linux as well as GPFS for AIX.

3

IBM Research

Blue Gene/L © 2004 IBM Co

DISK DISKDISK DISK

I/ O I/ O I/ O I/ O I/ O I/ O I/ O I/ O I/ O

Ethernet fabric

NSD NSD NSD NSD NSD

SAN fabric

GPFS client running on Blue Gene I/O nodes
 Chapter 3. Planning and sizing guidelines 61

62 Unfolding the IBM ̂Blue Gene Solution

Chapter 4. System management

This chapter discusses some of the basic user operations that have to be
performed using normal Blue Gene/L usage. Since other materials available
(including redbooks) cover the majority of these topics in more detail, we only
provide some minimal information needed to start working with and
understanding your system. Topics discussed here include:

� Operating your BG/L

� Remote shell

� Monitoring (HW, system SW)

� User environment (variables, directories)

� Scheduling (running) jobs

� Configuration and re-configuration

� Blocks (Partitions)

4

© Copyright IBM Corp. 2005. All rights reserved. 63

4.1 Operating your BG/L
In this section, we show the basic steps to operate your Blue Gene/L. Since the
entire system is composed of multiple nodes playing different roles, an
interaction between these is required for allocating partitions, running jobs, and
so forth.

4.1.1 Remote shell
To execute commands on I/O nodes and front-end nodes (FEN), some type of
remote command execution must be provided. Keep in mind that in the current
implementation, there is no out-of-the-box security; thus, if you need to secure
your Blue Gene/L system, you need to design the security environment yourself.
Generally, it is a good idea to start by establishing some type of boundary firewall
around your Blue Gene/L system.

SSH server
The first step to operate your Blue Gene system is to enable your remote shell.
OpenSSH is the default remote shell for SLES9 for the service node (SN) and
the front-end nodes. Telnet and rsh are supported in these distributions, but for
security reasons, we strongly recommend that you not use these programs. In
addition, the default Linux installation does not activate the telnet and rsh servers
(telnetd and rshd). For more information on OpenSSH refer to:

http://www.openssh.com/

To check if OpenSSH is installed, log on to both SN and FENs and issue the
following commands on the service node and front end nodes:

fumiyasu@rodan:~> rpm -q openssh
openssh-3.4p1-138

To check if the ssh server daemon starts on system boot, issue:

root:~ # chkconfig sshd -a
sshd 0:off 1:off 2:off 3:on 4:off 5:on 6:off

To check the status, and to start and stop the ssh server, you need to be logged
in to the system as user root., then issue the following commands:

root:~ # /etc/init.d/sshd status
Checking for service sshd: running
root:~ # /etc/init.d/sshd start
Starting SSH daemon done
root:~ # /etc/init.d/sshd stop
Shutting down SSH daemon done
root:~ #
64 Unfolding the IBM ̂Blue Gene Solution

http://www.openssh.com/

SSH client
The Linux distributions supported for the Blue Gene/L system have the
OpenSSH client installed by default. Check the version to make sure there are
no major security issues using the following command:

$ ssh -V
OpenSSH_3.9p1, OpenSSL 0.9.7e 25 Oct 2004

If you are using AIX servers connected to your Blue Gene/L environment, you
need to check and configure the correct ssh version. Here are some examples:

� For AIX 5L™, you can install it from:

http://www-124.ibm.com/developerworks/projects/opensshi

� For AIX 4.3, you can install it from:

http://www-1.ibm.com/servers/aix/products/aixos/linux/download.html

� For Windows®, there are several ssh clients, for example, PuTTY:

http://www.putty.nl/download.html

For further information about OpenSSH, refer to the following Web site:

http://www.openssh.com/

Virtual Network Computing (VNC)
VNC is a very convenient way to provide Graphical User Interface (GUI) access
to remote systems via an IP network connection. Although not supported by IBM,
it is a very popular solution for accessing both UNIX and Microsoft® Windows
using the GUI desktop.

One of the advantages of using VNC is that even if you lose your connection to
the system running the VNC server, all the programs executed in the GUI
desktop will continue to run. By reconnecting to your VNC server session, you
will be able to continue your work without starting over again.

VNC server
SUSE provides VNC packages in the basic server installation. We recommend
that you check the client versions to match the server installed on the machines
you want to connect to. You need to set up the VNC server on your service node
or front-end nodes.

Note: To check the latest VNC versions and licensing, and for code
downloads, see:

http://www.realvnc.com/download.html
 Chapter 4. System management 65

http://www-124.ibm.com/developerworks/projects/opensshi
http://www-1.ibm.com/servers/aix/products/aixos/linux/download.html
http://www.putty.nl/download.html
http://www.openssh.com/
http://www-124.ibm.com/developerworks/projects/opensshi
http://www.putty.nl/download.html

If security is an issue in your environment, you need to set up secure VNC
connections. For details, refer to Blue Gene/L: Software Installation,
Configuration, and Administration, SG24-6744.

VNC client
You need to install the VNC client on your workstation to control the server GUI
desktop. You can download and install the VNC client for Windows, AIX, Linux,
and MacOS from the previously mentioned location.

4.2 Monitoring (HW, system SW)
In this section, we describe several methods to monitor your Blue Gene/L
system. There are several aspects of monitoring:

1. Blue Gene/L hardware monitoring (nodes, power supplies, thermal status,
and so forth)

2. Blue Gene/L software monitoring (CNK, I/O node kernel, jobs, and so forth)

3. Blue Gene/L external elements (SN, FEN, file system servers, and so forth)

This section does not describe monitoring of the external elements, thus you
have to consider a way to monitor your SN, FEN, and file system servers.
Hardware and system software monitoring are covered by the Midplane
Management and Control System (MMCS) and the DB2 databases running on
the SN.

For monitoring external elements, we recommend the IBM Cluster System
Management (CSM) software. For details about CSM, see:

http://techsupport.services.ibm.com/server/csm

4.2.1 Monitoring logs via the MMCS software
The three main components of the MMCS, idoproxydb, mmcs_db_server, and
ciodb provide messages about various aspects of the Blue Gene/L system. If you
have a VNC session designated as a console on your service node, bglmaster
will start all three components, when you connect to the VNC session, in three

Note: Currently there is no off-the-shelf management solution for CSM and
Blue Gene/L. Also, currently CSM requires that a separate license be acquired
by the customer. There are plans to integrate Blue Gene/L management with
CSM, but this solution was in development at the time this redbook was
written.
66 Unfolding the IBM ̂Blue Gene Solution

http://techsupport.services.ibm.com/server/csm

X-window terminals (see Figure 4-1). If you are not using VNC or the MMCS
software is already running, you can find the output logged in:

/machine_name/BlueLight/logs/BGL

where machine_name is usually /bgl

Figure 4-1 Monitoring MMCS software through VNC

4.2.2 Monitoring via the databases
You can create your own monitoring scripts, consisting of DB2 SQL statements
that will interrogate the corresponding database and return the requested
information. Example 4-1 presents a sample script to show the current status of
the jobs.
 Chapter 4. System management 67

Example 4-1 Sample script bgljobs

#!/bin/bash

db2 'connect to bgdb0 user bglsysdb using db24bgls'
db2 "select jobid,username,blockid,status from bglsysdb.tbgljob"
db2 'terminate'

The output of sample script bgljobs looks similar to that shown in Example 4-2.

Example 4-2 Executing the bgljobs script

someone@bgfe01:~> ./bgljobs

 Database Connection Information

 Database server = DB2/LINUXPPC 8.2.0
 SQL authorization ID = BGLSYSDB
 Local database alias = BGDB0

JOBID USERNAME BLOCKID STATUS
----------- -------------------------------- ---------------- ------
 13715 someone R01-M0 R
 13716 someone R01-M0 S
 13718 someone R01-M0 S
 13722 someone R00-M0-NA_1 E
 13762 someone R00-M0-NA_1 R
 13763 someone R00-M0-NA_1 S

 6 record(s) selected.

DB20000I The TERMINATE command completed successfully.
someone@bgfe01:~>

Example 4-3 shows an example of listing the tables in the BG/L database.

Example 4-3 List tables in the database

fumiyasu@bgfe02:~> db2
(c) Copyright IBM Corporation 1993,2002
Command Line Processor for DB2 SDK 8.1.6

You can issue database manager commands and SQL statements from the
command
prompt. For example:
 db2 => connect to sample
68 Unfolding the IBM ̂Blue Gene Solution

 db2 => bind sample.bnd

For general help, type: ?.
For command help, type: ? command, where command can be
the first few keywords of a database manager command. For example:
 ? CATALOG DATABASE for help on the CATALOG DATABASE command
 ? CATALOG for help on all of the CATALOG commands.

To exit db2 interactive mode, type QUIT at the command prompt. Outside
interactive mode, all commands must be prefixed with 'db2'.
To list the current command option settings, type LIST COMMAND OPTIONS.

For more detailed help, refer to the Online Reference Manual.

db2 => connect to bgdb0 user bglsysdb using db24bgls

 Database Connection Information

 Database server = DB2/LINUXPPC 8.1.6
 SQL authorization ID = BGLSYSDB
 Local database alias = BGDB0

db2 => list tables

Table/View Schema Type Creation time
---------------------- ------------- ----- ---------------------------
A BGLSYSDB T 2005-01-14-11.07.46.184525
BGLALLOCATEDNODES BGLSYSDB V 2004-09-01-15.35.23.954325
BGLBASEPARTITION BGLSYSDB V 2004-09-01-15.35.24.942748

>>>>>>> Omitted lines <<<<<<<<<

TBGLTOPDIAGNOSTICLOG BGLSYSDB T 2004-10-12-17.06.42.127730

 169 record(s) selected.

DB20000I The TERMINATE command completed successfully.

For details, see “Chapter 12. A database walk-through” in Blue Gene/L: Software
Installation, Configuration, and Administration, SG24-6744.
 Chapter 4. System management 69

4.2.3 Web interface for the database (BGWEB)
There is a Web interface (named BGWEB) that enables you to query your
MMCS database, enabling you to monitor your Blue Gene system through your
Web browser. To set up BGWEB, see Blue Gene/L: Software Installation,
Configuration, and Administration, SG24-6744. If you have set up the BGWEB
on one of your front-end nodes, you should be able to browse the system
configuration using your Web browser. The URL should be:

http://<frontendnodeipaddress>/bglweb/index.php

Figure 4-2 shows the startup page of the BGWEB interface.

Figure 4-2 Blue Gene/L BGWEB
70 Unfolding the IBM ̂Blue Gene Solution

The BGWEB gives you five menu categories for query, as illustrated in the
following figures.

� Configuration queries

This shows the hardware configuration for your system (Figure 4-3).

Figure 4-3 Blue Gene/L Configuration Queries
 Chapter 4. System management 71

� Runtime information queries

This gives you status information of the jobs and blocks (Figure 4-4).

Figure 4-4 Blue Gene/L Runtime Queries
72 Unfolding the IBM ̂Blue Gene Solution

� Environmental queries

You can query environmental information such as temperatures, voltages,
status flags of the cards and fans of the Blue Gene system (see Figure 4-5).

Figure 4-5 Blue Gene/L Environmental Queries
 Chapter 4. System management 73

� RAS Event queries

This choice lets you view RAS (Reliability, Availability, Servicability) events
(see Figure 4-6).

Figure 4-6 Blue Gene/L RAS Event Queries
74 Unfolding the IBM ̂Blue Gene Solution

� Diagnostic test results queries

This choice enables you to view the results of the diagnostic tests that have
been executed on the system, as shown in Figure 4-7.

Figure 4-7 Diagnostic Test Results Queries

4.3 User environment (variables, directories)
In this section we describe some environment variables for the user’s default
bash shell on the front-end node. Add the variables to your ~/.bashrc file.
 Chapter 4. System management 75

4.3.1 Variables for DB2
Add the following variables to set the DB2 environment. You will need these
variables (see Example 4-4) in order to use commands that are related to the
MMCS (for example, mmcs_db_console, mpirun).

Example 4-4 Adding the variables to your ~/.bashrc file

$ echo “. /bgl/BlueLight/ppcfloor/bglsys/bin/db2profile” >> ~/.bashrc
$ echo “export
DB_PROPERTY=/bgl/BlueLight/ppcfloor/bglsys/bin/db.properties” \
>> ~/.bashrc
$. ~/.bash_profile

Make sure the db2.properties file is configured correctly on your system. A
sample file is shown in Example 4-5.

Example 4-5 The db2.properties file

database_name=bgdb0
database_user=bglsysdb
database_password=db24bgls
database_schema_name=bglsysdb
min_pool_connections=2
max_pool_connections=30

4.3.2 Variables for MMCS
Add the corresponding variables to export your MMCS server IP address, which
should be the same as the service node:

export MMCS_SERVER_IP=<servicenodeipaddress>

The default port for the MMCS server is 32031:

export MMCS_SERVER_PORT=32031

Add the PATH for MMCS software:

PATH=$PATH:/bgl/BlueLight/ppcfloor/bglsys/bin

4.3.3 Variables for MPIRUN
You will need the following variable to use mpirun:

export
BRIDGE_CONFIG_FILE=/bgl/BlueLight/ppcfloor/bglsys/bin/bridge.config
76 Unfolding the IBM ̂Blue Gene Solution

The format of the bridge.config file is as follows:

BGL_MACHINE_SN <Machine Serial Number>
BGL_MLOADER_IMAGE <Full path to microcode image file>
BGL_BLRTS_IMAGE <Full path to compute node run time image file>
BGL_LINUX_IMAGE <Full path to linux image file>
BGL_RAMDISK_IMAGE <Fill path to ramdisk image file>

Example 4-6 shows a sample of the bridge.config file:

Example 4-6 bridge.config

BGL_MACHINE_SN BGL
BGL_MLOADER_IMAGE /bgl/BlueLight/ppcfloor/bglsys/bin/mmcs-mloader.rts
BGL_BLRTS_IMAGE /bgl/BlueLight/ppcfloor/bglsys/bin/rts_hw.rts
BGL_LINUX_IMAGE /bgl/BlueLight/ppcfloor/bglsys/bin/zImage.elf
BGL_RAMDISK_IMAGE /bgl/BlueLight/ppcfloor/bglsys/bin/ramdisk.elf

4.3.4 Variables for the compilers
Example 4-7 shows the PATH variable pointing to the location of the compilers.
You need to change this according to the compiler version you use.

Example 4-7 The compiler path

VAC=/opt/ibmcmp/vac/7.0/bin
VACPP=/opt/ibmcmp/vacpp/7.0/bin
XLF=/opt/ibmcmp/XLF/9.1/bin
PATH=$PATH:$VAC:$VACPP:$XLF

4.3.5 The /bgl directory (the shared file system)
All the executables for your programs must reside in the shared file system. For
the current implementation this is conventionally NFS mounted on the /bgl
directory of the front-end node. If your system’s home directory is not under /bgl,
creating one directory with your username is a good idea. This should prevent
your work from getting mixed up with that of other users.

4.4 Scheduling (running) jobs
There are several ways to execute a job on the Blue Gene/L system. In this
section, we present the ones that are currently available.
 Chapter 4. System management 77

4.4.1 MPIRUN
Mpirun is a program used to run parallel MPI jobs on Blue Gene/L. Mpirun is
intended to simplify user interaction with the system by providing a simple
common interface for launching, monitoring, and controlling jobs. To use mpirun,
make sure your user environment variables are set properly. For further details,
refer to 5.3.1, “Using mpirun” on page 107.

4.4.2 IBM LoadLeveler
IBM LoadLeveler is a job management system that allows users to run more jobs
in less time by matching the jobs' processing needs with the available resources.
LoadLeveler schedules jobs, and provides functions for building, submitting, and
processing jobs quickly and efficiently in a dynamic environment. More
information about LoadLeveler is in 5.5, “Job management” on page 123.

4.4.3 mmcs_db_console
You can directly access the Midplane Management and Control System server
and run jobsy using mmcs_db_console. For details, refer to Blue Gene/L:
Software Installation, Configuration, and Administration, SG24-6744.

Here we show a simple example to run a job using mmcs_db_console.

1. Connect to the mmcs server by using mmcs_db_console.

Example 4-8 Connecting to the mmcs server by mmcs_db_console

fumiyasu@bgfe01:/gsa/watgsa/.home/h1/fumiyasu>.
/bgl/BlueLight/ppcfloor/bglsys/bin/db2profile
fumiyasu@bgfe01:/gsa/watgsa/.home/h1/fumiyasu>
/bgl/BlueLight/ppcfloor/bglsys/bin/mmcs_db_console --consoleip
rodan.watson.ibm.com --dbproperties /bgl/console/etc/db.properties
connecting to mmcs server
set_username fumiyasu
OK
connected to mmcs server
connected to DB2
mmcs$

2. Find a free block using the list_blocks command, which shows allocated
blocks.

Example 4-9 Listing free blocks

mmcs$ list_blocks
OK
78 Unfolding the IBM ̂Blue Gene Solution

R01-M0 arayshu(0) connected
R01-M1 arayshu(0) connected

3. Allocate a free block using the allocate command.

Example 4-10 Allocating a block

mmcs$ allocate R00-M0
OK

4. Submit your job using the submitjob command.

Example 4-11 Submitting job

mmcs$ submitjob R00-M0 /bgl/fumiyasu/helloworld/hello
/bgl/fumiyasu/helloworld
OK
jobId=14174

4.5 Configuration and reconfiguration
For the hardware configuration, Blue Gene/L is configured through the discovery
process. This is described in more detail in Blue Gene/L: Software Installation,
Configuration, and Administration, SG24-6744”.

4.5.1 Configuring system software images
If you have to update system software images for you Blue Gene system, you
can reconfigure the images using the setblockinfo command, which is one of
the mmcs_db_console command (see also Example 4-12).

setblockinfo <blockid> <mloader> <blrts> <linux> <ramdisk>

Example 4-12 example for setblockinfo

mmcs$ setblockinfo M09B_512
/bgl/BlueLight/ppcfloor/bglsys/bin/mmcs_mloader.rts
/bgl/BlueLight/ppcfloor/bglsys/bin/rts_hw.rts
/bgl/BlueLight/ppcfloor/bglsys/bin/zImage.elf
/bgl/BlueLight/ppcfloor/bglsys/bin/ramdisk.elf

4.5.2 Blocks (Partitions)
In the context of Blue Gene/L, partition means the same thing as block. It is a set
of I/O nodes and compute nodes, called a Pset, which are booted together. The
 Chapter 4. System management 79

jobs for Blue Gene/L are executed on blocks (partitions) of nodes. The block is
configured from an xml file stored in the DB2 database, using the bpxml2db
command under mmcs_db_console.

bpxml2db [path to XML block file] [machinename]

Example 4-13 The blockfile.xml

<BGLBlock name=`R010_J102_128'>

<BGLMidplane midplane=`R010'>

<BGLPset>
<BGLIONode board=`J102' card=`J18' chip=`U01'/>
<BGLComputeNodes board=`J102'/>
<BGLComputeNodes board=`J104'/>
<BGLComputeNodes board=`J106'/>
<BGLComputeNodes board=`J108'/>

<BGLPset>

</BGLMidplane>

<BGLBlock>

For more details, refer to Blue Gene/L: Software Installation, Configuration, and
Administration, SG24-6744.
80 Unfolding the IBM ̂Blue Gene Solution

Part 2 BG/L application
environment

In this part we describe the parallel application programming environment,
general guidelines for application porting, and tuning hints for exploiting the
massively parallel structure of Blue Gene/L.

We provide information about the compilers available, and the options you have
to use for exploiting the specifics of the system and the CPU design, like the
networks available and the double floating point unit.

We summarize the general guidelines you should follow to identify the structure
of your application since simple application re-compilation may not create a code
which efficiently exploits the massively parallel structure of the system. In other
words, we try to identify and classify the characteristics of the applications than
need to be considered for efficient running your applications on Blue Gene/L.

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 81

82 Unfolding the IBM ̂Blue Gene Solution

Chapter 5. Parallel environment

This chapter provides an introduction to the parallel environment available on
IBM Eserver Blue Gene Solution for scientific and engineering applications. It
presents the fundamentals required to successfully build and run applications on
Blue Gene/L.

The following topics are discussed:

� The application development environment

� An introduction to the XL compilers

� Parallel execution environment; needs and requirements to successfully run
an application on Blue Gene/L

� Tools that are required to analyze performance and debug applications

� A brief discussion about job management

5

Tip: The “Hello World!” program is used throughout this chapter to illustrate
the concepts discussed.
© Copyright IBM Corp. 2005. All rights reserved. 83

5.1 Application development environment
Throughout this chapter we present our examples based on the fact that the
users of the Blue Gene/L system log on to front-end nodes and perform all their
work from there. We do not use the IBM LoadLeveler or other high-end job
scheduling mechanisms.

The front-end nodes require access to a shared file system that is also
connected to the Blue Gene/L I/O nodes.

By convention, this shared file system is mounted at the /bgl mount point. This is
not mandatory; it is just done to make different Blue Gene/L system
configurations easier to understand, and is the convention adopted for the Blue
Gene/L systems used during this project.

The front-end nodes run the SuSE Linux Enterprise Server 9 (SLES 9) operating
system platform and should be familiar to existing users of UNIX systems or
UNIX-like systems (such as Linux on other hardware platforms).

Every user of the front-end nodes has a separate user environment and logs on
with a unique userid/password in the normal way. The user’s home directory may
already be defined as part of the shared /bgl file system, but if it is not, the first
action users will normally take after logging on is to change to a working directory
in the shared file system. Example 5-1 shows this process.

Example 5-1 Logging on to a front-end node

Wed Feb 23 16:23:53 TOT178 ~ > ssh -l jfollows bgfe01.watson.ibm.com
Password:
Last login: Wed Feb 23 14:56:50 2005 from jpfthinkpad.itso.ibm.com
jfollows@bgfe01:~> cd /bgl/jfollows
jfollows@bgfe01:/bgl/jfollows> ls
DLAB hello PMB2.2.1 PMB2.2.1.tar.gz PMB_License.doc sanity

Example 5-1 also shows that the secure shell (ssh) has been used to connect to
the front end node. This is not mandatory, but seems advisable, since it avoids
the transmission of the userid and password in clear text across the network.

The front end nodes are used to compile code and submit the jobs for Blue
Gene/L, and can be used to analyze the results of the jobs once they complete.

It is important to remember two things:

1. Any code and any data files which are needed by the code during execution
on the Blue Gene/L system need to be accessible by the Blue Gene/L
system, and therefore need to be on the shared file system (/bgl in our
environment).
84 Unfolding the IBM ̂Blue Gene Solution

2. Code compilation takes place on the front-end nodes but code is executed on
the Blue Gene/L nodes. This is therefore a cross-compilation process, and
care should be taken to avoid compiler options such as -qtune=auto, which
mean “optimize the compilation for this system” which is not appropriate.

The rest of this chapter demonstrates the process of compiling and running code
on Blue Gene/L using the simple code shown in Example 5-2.

Example 5-2 “Hello World” source code

jfollows@bgfe01:/bgl/jfollows/hello> cat hello_mpi.f

 program hello
 include 'mpif.h'
 integer rank, size, ierror, tag, status(MPI_STATUS_SIZE)
 character(12) message
 call MPI_INIT(ierror)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
 tag = 100
 if(rank .eq. 0) then
 message = 'Hello, world'
 do i=1, size-1
 call MPI_SEND(message, 12, MPI_CHARACTER, i, tag,
 & MPI_COMM_WORLD, ierror)
 enddo
 else
 call MPI_RECV(message, 12, MPI_CHARACTER, 0, tag,
 & MPI_COMM_WORLD, status, ierror)
 endif
 print*, 'node', rank, ':', message
 call MPI_FINALIZE(ierror)
 end

This code will be immediately familiar to many readers, but for those who aren’t
familiar with parallel MPI code the following explanation points may be helpful:

� This code is written in FORTRAN, but code performing the same function
could have been written as well in C.

� The code uses the Message Passing Interface (MPI) standard, which is
widely used and is the standard to which the Blue Gene/L system has been
designed.

� The code runs multiple identical copies in parallel on a number of nodes
specified at run time.
 Chapter 5. Parallel environment 85

� When the code runs, each copy determines how many copies are running
(“size”) and where in the sequence of identical copies this particular copy is
(“rank”).

� One instance of the code running on one of the processors (the one where
“rank” equals 0) sends a message to all the other code instances.

� All the other instances of the code receive this message, which is the string
“Hello, world”.

� Every code instance prints its value for “rank” followed by the message.

This particular code fragment will probably compile and run without alteration on
any parallel supercomputer which supports FORTRAN and MPI.

5.2 XL compilers
In this section we look at the compiler flags that affect the performance of an
application, in particular, we emphasize flags that are relevant to Blue Gene/L.
This is only a partial list; for a complete list, visit the IBM AIX Compiler
information center at:

http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp

In addition, the following books provide information about the compiler: Blue
Gene/L: Application Development, SG24-6745, and Advanced POWER
Virtualization on IBM eServer p5 Servers, SC24-7940.

A typical example is the property of associativity in a product: at low levels of
compiler optimization (for example, -O2), XL FORTRAN will evaluate (a*b*c)
always starting from a, even if b*c has already being computed. Although more
time will be consumed, it is safer since the answer might be dependent on the
order of execution. As the level of optimization increases, some of these
restrictions might be eliminated.

5.2.1 Optimization level
A few basic rules to remember when using the compiler for optimization:

� Optimization requires additional compilation time.

Note: It is important to always check answers as you increase the level of
compiler optimization. This is due to the fact that the compiler makes certain
assumptions about some of the statements in the code that can potentially be
optimized by re-writing that section of the code.
86 Unfolding the IBM ̂Blue Gene Solution

� Optimization produces faster code; but you should always check the results,
specially when using aggressive levels of compiler optimization.

� By default, the compiler chooses -O0 or -qnoopt.

� Enable compiler optimization with -O[N]; where N is 0, 2, 3, 4, or 5.
For example: $xlf -O3

Next, we discuss the different levels of compiler optimization, not to provide an
exhaustive list of flags but to convey information about the effects of the
so-called performance flags on scientific and engineering applications.

Level 0: -O0
This option is recommended for debugging. It is the fastest way to compile the
program. It preserves program semantics. This is also useful to see the effect of
hand tuning small kernels or certain do loops.

Level 2: -O2
This is the same as -O. At this level the compiler performs conservative
optimization. The optimization techniques used at this level are:

� Global assignment of user variables to registers, also known as graph
coloring register allocation

� Strength reduction and effective use of addressing modes.

� Elimination of redundant instructions, also known as common subexpression
elimination

� Elimination of instructions whose results are unused or that cannot be
reached by a specified control flow, also known as dead code elimination

� Value numbering (algebraic simplification)

� Movement of invariant code out of loops

� Compile-time evaluation of constant expressions, also known as constant
propagation

� Control flow simplification

� Instruction scheduling (reordering) for the target machine

� Loop unrolling and software pipelining

Level 3: -O3
At this level the compiler performs more extensive optimization. This includes:

� Deeper inner loop unrolling

� Better loop scheduling
 Chapter 5. Parallel environment 87

� Increased optimization scope, typically to encompass a whole procedure

� Specialized optimizations (those that might not help all programs)

� Optimizations that require large amounts of compile time or space

� Eliminates implicit memory usage limits (equivalent to compiling with
qmaxmem=-1)

� Implies -qnostrict, which allows some reordering of floating-point
computations and potential exceptions

Level 4: -O4
At this level the compiler introduces more aggressive optimization and increases
the optimization scope to the entire program. This option includes:

� -O3

� -qhot

� -qipa

� -qarch=auto

� -qtune=auto

� -qcache=auto

Level 5: -O5
At this level the compiler introduces the most aggressive optimization. This
option includes:

� -O4

� -qipa=level=2

5.2.2 Machine-specific flags
This set of flags is specific for a family architecture. The idea is to provide code
that is optimized for a particular architecture.

Important: At this level (3), the -qnostrict option is invoked by default. This
implies:

� Reordering of floating-point computations

� Reordering or elimination of possible exceptions (for example, division by
zero, overflow)

Important: If -O5 is specified on the compile step, then it should be specified
on the link step as well.
88 Unfolding the IBM ̂Blue Gene Solution

Table 5-1 Compiler optimization parameters

5.2.3 High-order transformations
-qhot optimization is targeted to improve the performance of loops and array
language. Loop optimization may include:

� Loop nest canonization

– Aggressive copy propagation to create more perfect loop nests

– Aggressive loop fusion to create larger loops and loop nests

– Code sinking to create more perfect loop nests

� High-level transformations (outer loops)

– Loop distribution to create more perfect loop nests

– Loop interchange for data locality and outermost parallelization

– Loop unroll-and-Jam for data reuse

– Gather/Scatter to create more perfect loop nests

– Peeling to eliminate loop-carried dependencies

– Identify and outline parallel loops

� Low-level transformations (inner loops)

– Node splitting, scalar replacement, and automatic vectorization

Important: By default, the compiler generates code that runs on all supported
systems; however, it might not be optimized for a particular system. This
default is true only for the low level of compiler optimization. As mentioned
previously, -O4 implies -qarch=auto, which will generate code compatible with
the machine used for compilation (and not necessarily every supported
architecture).

Option Description

-q32 For 32-bit execution mode

-q64 For 64-bit execution mode; not supported on Blue Gene/L

-qarch Selects specific architecture for which instruction is generated

-qtune Biases optimization toward execution on a given processor,
without implying anything about the instruction set architecture to
use as a target

-qcache Defines a specific cache or memory
 Chapter 5. Parallel environment 89

– Inner loop distribution (sensitive to number of hardware streams)

– Gather/Scatter and index set splitting to eliminate branches in inner loops

The goals of high-order transformation are:

� Reducing the costs of memory access through the effective use of caches
and translation look-aside buffers

� Overlapping computation and memory access through effective utilization of
the data prefetching capabilities provided by the hardware

� Improving the utilization of processor resources through reordering and
balancing the usage instructions with complementary resource requirements

5.2.4 Interprocedural analysis
The -qipa parameter allows the compiler to perform optimization across different
files. In other words, it provides analysis for the entire program. Interprocedural
analysis has the suboptions defined in Table 5-2.

Table 5-2 Interprocedural analysis -qipa suboptions

5.2.5 XL FORTRAN new and changed functionality
Some features have been added or improved in the XL FORTRAN compiler. In
this section, we provide a brief overview of this new functionality. Table 5-3 shows
some of the new options.

Suboption Description

level=0 • Automatic recognition of standard libraries.
• Localization of statistically bound variables and procedures.
• Partitioning and layout of procedures according to their calling

relationships, which is also referred to as their call affinity.
• Expansion of scope for some optimizations, specially register

allocation.

level=1 • Procedure inlining.
• Partitioning and layout of static data according to reference affinity.

level=2 • Whole-program alias analysis. This level includes the disambiguation
of pointer dereferences and indirect function calls, and the refinement
of information about the side effects of a function call.

• Intensive interprocedural optimizations. This can take the form of value
numbering, code propagation and simplification, code motion into
conditions or out of loops, elimination of redundancy.

• Interprocedural constant propagation, dead code elimination, pointer
analysis.

• Procedure specialization.
90 Unfolding the IBM ̂Blue Gene Solution

Table 5-3 New options and suboptions for XL FORTRAN

In addition, with the XL FORTRAN 9.1 compiler, new options and suboptions that
affect performance have been added. Table 5-4 summarizes these newly added
options and suboptions. Some of the options presented in this table are
discussed in more detail in other sections.

Table 5-4 New and changed options and suboptions

Option/Suboptions Comments

-qflttrap=nanq The suboption detects all NaN values handled or
generated by floating point instructions, including those not
created by invalid operations.

-qport=nullarg The suboption treats an empty argument, which is
delimited by a left parenthesis and a comma, two commas,
or a comma and a right parenthesis, as a null argument.

-qmodule=mangle81 The option provides compatibility with Version 8.1 module
naming conventions for non-intrinsic modules.

-qsaveopt The option saves the command-line options used for
compiling a source file in the corresponding object file.

-qversion The option provides the version and release for the
invoking compiler.

Option/Suboption Description

-qarch and -qtune These two options now provide support for POWER5 and
PowerPC 970 architectures (pwr5 and ppc970).

-qshowpdf and -qpdf1 Provide additional call and block count profiling information to
an executable.

showpdf and mergepdf utilities Provide enhanced information about PDF-directed
compilation; mergepdf merges two or more PDF files.

-qdirecstorage Informs the compiler that a given compilation unit may
reference write-through-enabled or cache-inhibited storage.

SWDIV and SWDIV_NOCHK intrinsics Provide software floating-point division algorithms.

FRE and FRSQRTES intrinsic Floating-point reciprocal estimate and floating-point square
root reciprocal.

POPCNT and POPCNTB intrinsics Provide set bit counts in registers for data objects.

POPPAR intrinsic Determines the parity for a data object.
 Chapter 5. Parallel environment 91

5.2.6 Compiler directives for performance
Once the compiler flags have been optimized, the programmer can still use
highly optimized libraries and compiler directives to improve performance without
major changes to the code. The use of highly optimized libraries is covered later.
In this section we only mention compiler directives. In particular, we look at
directives for code tuning and hardware-specific directives that potentially can
help improve performance.

To identify a sequence of characters, called trigger constants, XL FORTRAN
uses the -qdirective option:

-qdirective [=directive_list] | -qnodirective [=directive_list]

The compiler recognizes the default trigger constant IBM*. Table 5-5 provides a
list of assertive, loop optimization, and hardware-specific directives.

Table 5-5 Assertive, loop optimization, and hardware-specific directives.

Note: The compiler will use either fdiv or FRE, if computing with -qarch=pwr5,
and depending on which one is deemed better by the compiler. In particular,
single block loops will sometimes use fdiv rather than FRE and the expansion,
since overall latency is sometimes more important than parallelization.

Directive Description

Type: Assertive

ASSERT Provides characteristics of do loops for further
optimization; requires -qsmp or -qhot

CNCALL Declares that no loop-carried dependencies exist within
any procedure called from the Do loop; requires -qsmp or
-qhot

INDEPENDENT Must precede a Do loop, FORALL statement; it specifies
that the loop can be executed and iterations performed in
any order without affecting semantics; requires -qsmp or
-qhot

PERMUTATION Specifies that the elements of each array listed in the
integer_array_name_list have no repeated values;
requires -qsmp or -qhot

Type: Loop optimization

BLOCK_LOOP Allows blocking inside nested loops; also requires -qhot or
-qsmp
92 Unfolding the IBM ̂Blue Gene Solution

LOOPID Allows the assignment of unique identifier to loop within a
scoping unit

STREAM_UNROLL Allows for a combination of software prefetch and loop
unrolling; requires -qhot, -qipa=level=2, or -qsmp, and
-O4

UNROLL Allows loop unrolling where applicable

UNROLL_AND_FUSE Allows loop unrolling and fuse where applicable

Type: Hardware-specific

CACHE_ZERO Invokes machine instruction dcbz; sets the data cache
block corresponding to the variable specified to zero

ISYNC Enables discarding of any prefetched instructions after all
preceding instructions complete

LIGHT_SYNC Ensures that all stores prior to LIGHT_SYNC complete
before any new instructions can be executed on the
processor that executed the LIGHT_SYNC directive

PREFETCH_BY_STREAM Uses the prefetch engine to recognize sequential access
to adjacent cache lines and then requests anticipated
lines from deeper levels of memory hierarchy

PREFETCH_FOR_LOAD Prefetches data into the cache for reading by way of a
cache prefetch instruction

PREFETCH_FOR_STORE Prefetches data into the cache for writing by way of a
cache prefetch instruction

PROTECTED_UNLIMITED_
STREAM_SET_GO_FORW
ARD

Establishes an unlimited length protected stream that
begins with the cache line at the specified prefetch
variable and fetches from increasing memory addresses

PROTECTED_UNLIMITED_
STREAM_SET_GO_BACKW
ARD

Fetches from decreasing memory addresses

PROTECTED_STREAM_SE
T_GO_FORWARD

Establishes a limited length protected stream that begins
with the cache line at the specified prefetch variable and
fetches from increasing memory

PROTECTED_STREAM_SE
T_GO_BACKWARD

Fetches from decreasing memory addresses

PROTECTED_STREAM_CO
UNT

Sets the number of cache lines for the specified
limited-length stream

Directive Description
 Chapter 5. Parallel environment 93

5.2.7 Directive usage
In this section we provide a series of examples that illustrate how to apply some
of these compiler directives. Although some of them are not difficult to implement
in the code, others are more involved.

As we previously described, the ASSERT directive provides a way to specify that
a particular DO loop does not have dependencies. The assertion can take the
following forms:

� ITERCNT(n); where n specifies the number of iterations for a given DO loop.
n most be positive, scalar, and an integer initialization expression.

� NODEPS specifies that no loop dependencies exist within a particular DO
loop.

Example 5-3 ASSERT directive

c ASSERT Directive
 program dir1
 implicit none
 integer i,n, fun
 parameter (n = 100000)
 real*8 a(n)
 integer(8) t0, tfin, irtc

do i = 1,n
a(i) = rand()

end do
c ... start timer
 t0 = irtc()
!IBM* ASSERT (NODEPS)
 do i = 1, n
 a(i) = a(i) * fun(i)
 end do
c ... time

PROTECTED_STREAM_GO Starts to prefetch all limited-length streams

PROTECTED_STREAM_ST
OP

Stops prefetching the specified protected stream

PROTECTED_STREAM_ST
OP_ALL

Stops prefetching all protected streams

Directive Description

Important: The ASSERT directive applies only to the DO loop following the
directive. It does not apply to nested DO loops (see Example 5-3).
94 Unfolding the IBM ̂Blue Gene Solution

 tfin = (irtc() - t0)/1000000
 write(6,*)'Time: ',tfin, 'msec.'
 stop
 end
C
 function fun(i)
 fun = i * i
 return
 end

In this example we have used the idea of loop-carried dependencies or data
dependency. Since this concept is commonly used throughout this chapter, we
need to properly define loop-carried dependencies:

Dependencies Current iteration requires data computed in some
previous iteration, or computes data for some subsequent
iteration.

An example may be seen in a loop with, a(i) = a(i-1)*2, computing a(5) requires
a(4).

The loop optimization directive is BLOCK_LOOP. This directive relies on a well
known optimization technique called blocking. This directive separates large
iterations into smaller groups of iterations. Hence, the name blocking. The basic
idea is to increase the utilization of the submemory hierarchy. Notice that in
Example 5-4, L2_cache_size and L3_cache_size need to be assigned values
corresponding to the cache of the particular system where this example is going
to be executed.

Example 5-4 BLOCK_LOOP directive

c BLOCK_LOOP Directive
 program dir4
 implicit none
 integer i,j,k,n
 integer L3_cache_size, L3_cache_block
 integer L2_cache_size, L2_cache_block
 parameter (n = 100)
 integer a(n,n), b(n,n), c(n,n)
 integer(8) t0, tfin, irtc
 do j = 1,n
 do i = 1,n
 a(i,j) = rand()
 b(i,j) = rand()
 enddo
 enddo
 do j = 1, n
 do i = 1, n
 Chapter 5. Parallel environment 95

 c(i,j)=0.0
 enddo
 enddo
c ... start timer
 t0 = irtc()
!IBM* BLOCK_LOOP(L3_cache_size, L3_cache_block)
 do i = 1, n

!IBM* LOOPID(L3_cache_block)
!IBM* BLOCK_LOOP(L2_cache_size, L2_cache_block)
 do j = 1, n

!IBM* LOOPID(L2_cache_block)
 do k = 1, n
 c(i,j) = c(i,j) + a(i,k) * b(k,j)
 enddo
 enddo
 enddO
c ... time
 tfin = (irtc() - t0)/1000000
 write(6,*)'Time: ',tfin, 'msec.'
 call dummy (c,n)
 stop
 end
c

5.2.8 Blue Gene/L compiler features
Although Blue Gene/L uses the IBM XL compilers, there are differences with
respect to all other IBM servers. In particular, in the case of the IBM pSeries
Linux programming model, some of the differences from Linux PPC64 are:

� No stdin

� No asynchronous I/O

� No dynamic linking

� No demand paging/swap

– Virtual address space is mapped 1-on-1 with physical memory

� No read-only memory

– Due to CNK design decision

– No SIGSEGV writing to a const char *p

Also, certain system calls are not supported; they are identified in this book and
in Blue Gene/L: Application Development, SG24-6745. We do cover some of the
system calls that are supported with limitations.
96 Unfolding the IBM ̂Blue Gene Solution

On Blue Gene/L the front end is running SuSE SLES9 Linux/PPC64 and it
provides the platform for IBM XL cross compilers for Blue Gene/L. The
cross-compiler environment can be summarized by indicating the following
components that are required:

� Front-end node running SuSE SLES 9 on a PPC64

� PowerPC-Linux-GNU to generate PowerPC-blrts-GNU

� GNU toolchain for Blue Gene/L

� IBM XL cross compilers for Blue Gene/L

Currently, to build binaries or executables for Blue Gene/L, the IBM XL compilers
require the following:

� Installation of IBM XLC V7.0/XLF V9.1 compilers for SuSE SLES9
Linux/PPC64

� Installation of the Blue Gene/L add-on that includes Blue Gene/L versions of
the XL run-time libraries, compiler scripts, and configuration files.

– The GNU Blue Gene/L toolchain is required.

• gcc, g++, and g77 v3.2

• binutils (as, ld, ...) v2.13

• GLIBC v2.2.5

– Blue Gene/L support supplied via patches. The customer applies the
patches and builds the toolchain; IBM supplies scripts to download, patch,
and build everything.

As mentioned, on Blue Gene/L we need to include an add-on as part of the
compiler. Figure 5-1 and Figure 5-2 illustrate the different levels of libraries that
interact with the kernel.
 Chapter 5. Parallel environment 97

Figure 5-1 Linux software stack

In the case of the Linux software stack,as well as the case of Blue Gene/L, you
see the dependency on the GNU software.

GLIBC

Application

GCC libs
XL libs

Linux Kernel
98 Unfolding the IBM ̂Blue Gene Solution

Figure 5-2 Blue Gene/L software stack.

Here we enumerate some of the libraries that are required. The run-time libraries
correspond to:

� GNU run-time libraries

– GCC libraries

• GNU standard C++ library (libstdc++.a)

• GCC low-level run-time library (libgcc.a)

• G77 run-time library (libg2c.a)

� GLIBC libraries

– GNU C library (libc.a)

– Math library (libm.a)

– IEEE floating point library (libieee.a)

– G++ run-time library (libg.a)

– Cryptography library (libcrypt.a)

– NSS/Resolve libraries (libnss_dns.a, libnss_files.a, libresolv.a)

GLIBC

Application

GCC libs
XL libs

CIOD

Compute Node Kernel
 Chapter 5. Parallel environment 99

� IBM XL run-time libraries

– IBM C++ library (libibmc++.a)

• Very light wrapper to libstdc++.a

– IBM XLF run-time library (libxlf90.a)

– IBM XL low-level run-time library (libxl.a)

– IBM XL optimized intrinsic library (libxlopt.a)

• Vector intrinsic functions

• BLASS routines

– IBM XL MASSV library (libmassv.a)

• Vector intrinsic functions

– IBM XL OpenMP compatibility library (libxlomp_ser.a)

This gives us a set of two working compilers in the front-end:

� Linux: xlc, xlC, xlf, xlf90, and so forth

� Blue Gene/L: blrts_xlc, blrts_xlC, blrts_xlf, blrts_xlf90, and so forth

We also mentioned that the Blue Gene/L add-on requires compiler scripts.
Example 5-5 illustrates one of the current scripts.

Example 5-5 Compiler wrapper

#!/bin/bash

export XL_CONFIG=`echo ${0} | sed -e
's#/opt/ibmcmp/.*$#/etc/opt/ibmcmp/#'``basename ${0%_*}`.cfg
blrtscmd="`dirname ${0%_*}`/${0##*_} $@"

if [-n "$BLRTSDEBUG"]; then
 echo "export XL_CONFIG=${XL_CONFIG}"
 echo "$blrtscmd"
fi

This script takes the blrts_xl* and removes the blrts_ to get xl*. It then executes
xl* with the XL_CONFIG environment variable pointing to a particular Blue
Gene/L configuration file so it links against a particular XL and GNU libraries. It
also adds -qbgl and other options to every compile command so as to turn it into
a Blue Gene/L cross compiler.
100 Unfolding the IBM ̂Blue Gene Solution

5.2.9 Blue Gene/L compiler flags
Table 5-6 lists some of the most commonly used compiler options for scientific
and engineering applications on Blue Gene/L.

Table 5-6 BG/L compiler flags

Example 5-6 is a sample of a makefile. The C version of this makefile only
requires replacing the FORTRAN compiler with the C compiler.

Example 5-6 make.hello using the FORTRAN compilers

XL_F90 = /opt/ibmcmp/xlf/9.1/bin/blrts_xlf90
XL_F77 = /opt/ibmcmp/xlf/9.1/bin/blrts_xlf
OBJ = hello
SRC = hello_mpi.f
FLAGS = -O3 -qarch=440d -qtune=440 -I
/bgl/BlueLight/ppcfloor/bglsys/include
LIBS = -L/bgl/BlueLight/ppcfloor/bglsys/lib -lmpich.rts -lmsglayer.rts
-lrts.rts -ldevices.rts
FLD = -O3 -qarch=440d -qtune=440

$(OBJ): $(SRC)
 ${XL_F77} $(FLAGS) $(SRC) -o $(OBJ) $(LIBS)

clean:
 rm *.o hello

Option Description

-qarch=440 -qtune=440 Generates single PowerPC floating point
unit code; generates parallel instructions
for the 440d dual processor

-qarch=440d -qtune=440 Attempts to generate Double floating point
unit code

-qhot=simd Double floating point code optimized for
SMID operations; enables SIMD
vectorization of loops; it is the default with
-qhot, -O4, and -O5

-O4/-O5 Enables “-qhot=simd -qipa”

-qarch=auto, -qtune=auto, -qcache=auto Disabled on Blue Gene/L; if specified, the
default architecture will apply (440d)

-qbgl Makes Blue Gene/L binaries; this is set in
the Blue Gene/L wrapper
 Chapter 5. Parallel environment 101

5.3 Parallel execution environment
Now that we have successfully compiled code for Blue Gene/L, how does the
code actually run?

Blue Gene/L is designed to run code which uses MPI. MPI is the Message
Passing Interconnect standard used for communication between distinct and
separate parallel tasks. The actual number of parallel tasks is chosen when the
job is run, not when the code is compiled.

So, the first decision which needs to be made is: How many parallel tasks do we
want for a particular job run?

Having decided on the number of tasks, it is necessary to allocate a Blue Gene/L
partition that contains sufficient compute nodes to run the job. The size of
partitions available to users of Blue Gene/L are determined by the system
administrators, so an exact match may not be possible, in which case it is
necessary to allocate a partition with more compute nodes than are actually
required.

Some of the documents and certain commands refer to a Blue Gene/L block.
The terms block and partition are interchangeable.

Each partition also includes at least one Blue Gene/L I/O node. This I/O node is
required. Without it, communication between the compute nodes and the
external file system is not possible.

Important: In the default configuration, Communication Coprocessor Mode,
each Blue Gene/L compute node runs a single MPI task, which has access to
512MB of memory. In Virtual Node Mode, each Blue Gene/L compute node
runs two MPI tasks, one task per processor, each task having access to
256MB of memory.

Note: The current implementation (no LoadLeveler), requires that a partition
be allocated explicitly prior to submitting a job for execution. When
LoadLeveler support is available, LoadLeveler manages the partition
allocation automatically prior to submitting the job for execution in that
partition.

The mpirun command can also be used to allocate a partition and run a job in
a single command, but currently the smallest size partition which can be
allocated is a midplane (512 nodes / 1024 CPUs).
102 Unfolding the IBM ̂Blue Gene Solution

For our sample code, we have decided to run 32 MPI tasks and to run the job in
Communication Coprocessor Mode.

The first step we must take if we are sharing the system with other users is to
determine which partitions on the system are already in use. This is
accomplished by querying the DB2 database on the service node. The DB2
query that can be used for this purpose is shown in Example 5-7.

Example 5-7 DB2 query to determine which Blue Gene/L partitions are in use

jfollows@bgfe01:/bgl/jfollows/hello> cat /bgl/console/bin/bglusers
#!/bin/ksh

. /bgl/console/etc/bgl.env

db2 'connect to bgdb0 user bglsysdb using db24bgls'
db2 "select substr(blockid,1,16)blockid,STATUS,OWNER from bglsysdb.tbglblock
where blockid like '%$1%' and status <> 'F' "
db2 'terminate'

The result of running this query is shown in Example 5-8, which shows the
names of the partitions (BLOCKID) and the user associated with the partition.

Example 5-8 Result of querying the DB2 database for active partitions

jfollows@bgfe01:/bgl/jfollows/hello> /bgl/console/bin/bglusers
Database Connection Information

 Database server = DB2/LINUXPPC 8.1.6
 SQL authorization ID = BGLSYSDB
 Local database alias = BGDB0

BLOCKID STATUS OWNER
--
R00-M0-N0_1 I salapura
R00-M0-N2_1 I aawyszog
R00-M0-N4_1 I reddyh
R00-M0-N6_1 I sauagarw
R00-M0-N8_1 I aawyszog
R00-M0-NE_1 I gunnels
R00-M1-N0123_2 I reddyh
R00-M1-N3_1 I aawyszog
R00-M1-N5_1 I skrieg
R00-M1-NCDEF_4 I gunnels
R01-M0 I mariae

 12 record(s) selected.
DB20000I The TERMINATE command completed successfully.
 Chapter 5. Parallel environment 103

On our system, we have partitions defined which contain 32 compute nodes and
a single I/O node, so we allocate a free partition using the database console
environment as shown in Example 5-9.

Example 5-9 Allocating a partition

jfollows@bgfe01:/bgl/jfollows/hello> /bgl/console/bin/bglconsole
connecting to mmcs server
set_username jfollows
OK
connected to mmcs server
connected to DB2
mmcs$ allocate R00-M0-NC_1
OK

Now that we have a partition allocated, we can submit a job for execution in the
partition. All nodes in the partition will be used for the parallel job, in this case 32.
One method of submitting a job is with the submitjob command under the same
console environment used to allocate the partition.

The parameters passed to the submitjob command are:

� The name of the partition previously allocated

� The full path and name of the executable code to run

� The working directory for the code to write results to

An example of submitting a job to execute on our partition is show in
Example 5-10.

Example 5-10 Submitting a job

jfollows@bgfe01:/bgl/jfollows/hello> /bgl/console/bin/bglconsole
connecting to mmcs server
set_username jfollows
OK
connected to mmcs server
connected to DB2
mmcs$ submitjob R00-M0-NC_1 /bgl/jfollows/hello/hello.rts /bgl/jfollows/hello
OK
jobId=9028

The /bgl/console/bin/bgljobs command can be used to check the status of
the job, as shown in Example 5-11.
104 Unfolding the IBM ̂Blue Gene Solution

Example 5-11 Checking the status of jobs on Blue Gene/L

jfollows@bgfe01:/bgl/jfollows/hello> /bgl/console/bin/bgljobs
Database Connection Information
Database server = DB2/LINUXPPC 8.1.6
 SQL authorization ID = BGLSYSDB
 Local database alias = BGDB0

JOBID USERNAME BLOCKID STATUS
----------- -------------------------------- ---------------- ------
 8974 aawyszog R00-M1-N3_1 R
 8977 aawyszog R00-M1-N3_1 S
 8978 mariae R01-M0 R
 8979 aawyszog R00-M1-N3_1 S
 8980 aawyszog R00-M0-N8_1 R
 8989 reddyh R00-M1-N0123_2 R
 8991 gunnels R00-M1-NCDEF_4 E
 8992 gunnels R00-M1-NCDEF_4 E
 9027 gunnels R00-M0-NE_1 R
 9028 jfollows R00-M0-NC_1 R

 10 record(s) selected.

DB20000I The TERMINATE command completed successfully.

Here we see that the job we submitted is running (STATUS is R).

Once the job has completed, we can look in the working directory we specified in
the submitjob command to see the output files. In addition to files which the job
itself may have created, we always get two output files:

� <partition>-<job number>.stderr

� <partition)-<job number>.stdout

Example 5-12 shows the files now in the working directory and the contents of
the output file from the parallel job - which verifies that 32 parallel tasks have
indeed been used for this job.

Example 5-12 The output of the parallel job

jfollows@bgfe01:/bgl/jfollows/hello> ls -rtla
total 6672
drwxr-xr-x 6 jfollows jfollows 4096 2005-02-23 15:48 ..
-rw-r--r-- 1 jfollows jfollows 798 2005-02-23 15:50 hello_mpi.f
-rw-r--r-- 1 jfollows jfollows 484 2005-02-23 15:56 Makefile
-rwxr-xr-x 1 jfollows jfollows 6793218 2005-02-23 16:00 hello.rts
-rw-r--r-- 1 jfollows jfollows 0 2005-02-24 12:56 R00-M0-NC_1-9028.stderr
drwxr-xr-x 2 jfollows jfollows 4096 2005-02-24 12:56 .
-rw-r--r-- 1 jfollows jfollows 1100 2005-02-24 12:56 R00-M0-NC_1-9028.stdout
 Chapter 5. Parallel environment 105

jfollows@bgfe01:/bgl/jfollows/hello> cat R00-M0-NC_1-9028.stdout
stdout[3]: node 3 :Hello, world
stdout[23]: node 23 :Hello, world
stdout[0]: node 0 :Hello, world
stdout[1]: node 1 :Hello, world
stdout[29]: node 29 :Hello, world
stdout[6]: node 6 :Hello, world
stdout[2]: node 2 :Hello, world
stdout[4]: node 4 :Hello, world
stdout[7]: node 7 :Hello, world
stdout[10]: node 10 :Hello, world
stdout[5]: node 5 :Hello, world
stdout[14]: node 14 :Hello, world
stdout[16]: node 16 :Hello, world
stdout[17]: node 17 :Hello, world
stdout[20]: node 20 :Hello, world
stdout[19]: node 19 :Hello, world
stdout[30]: node 30 :Hello, world
stdout[11]: node 11 :Hello, world
stdout[8]: node 8 :Hello, world
stdout[9]: node 9 :Hello, world
stdout[15]: node 15 :Hello, world
stdout[12]: node 12 :Hello, world
stdout[13]: node 13 :Hello, world
stdout[27]: node 27 :Hello, world
stdout[28]: node 28 :Hello, world
stdout[31]: node 31 :Hello, world
stdout[18]: node 18 :Hello, world
stdout[21]: node 21 :Hello, world
stdout[22]: node 22 :Hello, world
stdout[24]: node 24 :Hello, world
stdout[25]: node 25 :Hello, world
stdout[26]: node 26 :Hello, world

Jobs can be run in Virtual Node Mode if the partition in which they run is
initialized in this mode. In our case, we can free the partition we have just created
and re-allocate it in this mode, as shown in Example 5-13.

Example 5-13 Re-allocating a partition using Virtual Node Mode

jfollows@bgfe01:/bgl/jfollows/hello> /bgl/console/bin/bglconsole
connecting to mmcs server
set_username jfollows
OK
connected to mmcs server
connected to DB2
106 Unfolding the IBM ̂Blue Gene Solution

mmcs$ free R00-M0-NC_1
OK
mmcs$ allocate R00-M0-NC_1 virtual_node_mode
OK

We could now submit the job again, and if exactly the same command were used
we would see the parallel job running, this time with 64 unique MPI tasks,
because now we run one MPI task on each of the two processors on each
compute node. This particular parallel job has minimal demands on memory, so
there are no problems running in this mode.

Additional environment variables can be added to the end of the submitjob
command. So, for example, we can submit a job in a 32-node partition but
specify that only 16 MPI tasks be run in total, as shown in Example 5-14.

Example 5-14 Submitting a job which uses a subset of the available nodes

jfollows@bgfe01:/bgl/jfollows/hello> /bgl/console/bin/bglconsole
connecting to mmcs server
set_username jfollows
OK
connected to mmcs server
connected to DB2
mmcs$ submitjob R00-M0-NC_1 /bgl/jfollows/hello/hello.rts /bgl/jfollows/hello
BGLMPI_SIZE=16
OK
jobId=9031

5.3.1 Using mpirun
The mpirun command is also available on the front-end nodes as a method of
submitting jobs to the Blue Gene/L processors.

The mpirun command will be familiar to existing users of supercomputers that
implement MPI using mpich, just as Blue Gene/L does, such as Linux clusters.

The use of the mpirun command offers one clear usability advantage over
submitjob because mpirun allows the allocation of the partition and the execution
of the parallel job to be performed through a single command.

So, for our “Hello, world” job it would be possible to allocate a 32-CPU partition
and to execute the job with a single command as follows:

Example 5-15 Using mpirun to allocate and run the job

mpirun -np 32 -exe /bgl/jfollows/hello/hello.rts -cwd /bgl/jfollows/hello
 Chapter 5. Parallel environment 107

The previous command specifies the number of processors but places no
requirement on the layout of the processors. A new partition will be created which
contains the appropriate number of processors and the job is then submitted to
execute in that partition.

Alternatively, mpirun can be used to create a partition with a particular layout (or
shape). In this case, instead of specifying the total number of processors, the
shape of the partition is specified, as shown in Example 5-16.

Example 5-16 Using mpirun to run a job in a partition with a given shape

mpirun -shape 4x4x2 -exe /bgl/jfollows/hello/hello.rts -cwd /bgl/jfollows/hello

If we know the shape of the partition, we may be able to take advantage of this
knowledge in tuning the application; this is discussed further in 5.3.2, “Mapping
MPI tasks to Blue Gene/L nodes” on page 109.

To use Virtual Node Mode, an extra parameter is added to the mpirun command,
as shown in Example 5-17.

Example 5-17 Using mpirun to run a job in Virtual Node Mode

mpirun -np 32 -mode VN -exe /bgl/jfollows/hello/hello.rts -cwd \
/bgl/jfollows/hello

The shape and np options can be used together, in which case the shape
specification determines the size of the partition, and the number of processors
can be equal to or less than the number available in the partition. Using mpirun to
achieve the same result as shown in Example 5-17, where we ran the parallel job
on 16 processors in a partition which comprised 32 processors, we would use
the command such as shown in Example 5-18.

Example 5-18 Using mpirun to run a job on a subset of nodes in a partition

mpirun -shape 4x4x2 -np 16 -exe /bgl/jfollows/hello/hello.rts -cwd \
/bgl/jfollows/hello

Here the partition comprises 32 processors, but we are only running the parallel
job on 16 of the processors in the partition.

Finally, mpirun still provides the option of allocating a partition in advance of job
submission. In this case, in a similar method as for the submitjob command
shown in Example 5-14 on page 107, we can submit a job to run on an existing
partition using mpirun as shown in Example 5-19.
108 Unfolding the IBM ̂Blue Gene Solution

Example 5-19 Using mpirun to run a job in an existing partition

mpirun -partition=R00-M0-NC_1 -exe /bgl/jfollows/hello/hello.rts -cwd \
/bgl/jfollows/hello

When specifying an existing partition, mpirun will ignore any shape specification
on the command, but the number of processors to be used can still be specified
(of course, provided that the number of processors is less than or equal to the
number available in the partition).

5.3.2 Mapping MPI tasks to Blue Gene/L nodes

In Example 5-12 on page 105 we showed the output of a parallel job. We used
the submitjob command to run our parallel code “hello.rts” as shown in
Example 5-15 on page 107, and because the partition we allocated had 32
compute nodes, the result was that 32 instances of the same executable code
ran in parallel.

All the compute nodes in the Blue Gene/L system are identical; they all have the
same amount of memory, run the same processor, and have the same number
and type of connections to other nodes in the cluster.

Just as for other cluster types, the location of a particular compute node in
relation to all other compute nodes in the cluster may be important.

For example, in a cluster made from multiple 32-way SMP systems, a task
running on a particular processor in the cluster will probably have higher
bandwidth and lower latency when communicating with another task running on
the same SMP system as when communicating with a task running on a different
SMP system. This can lead to strategies of MPI and code design maximizing
total performance by understanding the topology of the MPI tasks and how they
relate to each other. For example, an enhanced collective operation may have a
single MPI task perform all communication with MPI tasks on remote systems.

Similar considerations apply to Blue Gene/L. One strategy is to maximize
communication between tasks which are more close to each other and minimize
communication between tasks which are less close to each other. In this case,
we define closeness as being the number of steps through the communication

Note: This section goes into a lot of detail about how some aspects of Blue
Gene/L really work. It’s not necessary to understand this level of detail just to
run jobs on Blue Gene/L, but ultimately anyone wanting to do serious
performance tuning is going to have to understand this material.
 Chapter 5. Parallel environment 109

network between a pair of tasks, observing that on Blue Gene/L this can vary
tremendously.

Section 2.1.6, “Communications” on page 19 describes the networks that
connect the Blue Gene/L nodes to each other. The rest of this section considers
the torus network, which is used for the majority of the MPI communication.

For each partition, the compute nodes that form part of the partition are laid out
as a subset of the complete Blue Gene/L torus network in a three dimensional
mesh, such as shown in Figure 2-3 on page 20. For a particular parallel job, how
can we relate the rank of a particular instance of the code (which is a positive
integer starting at zero, used as shown in Example 5-2 on page 85) to its position
relative to the other code instances on the torus network?

It turns out that there are three ways of positioning the individual MPI tasks
across a given torus network:

1. A default automatic allocation strategy

2. An alternative automatic allocation strategy

3. Explicitly mapping each individual MPI tasks to a specific location

To understand these options, begin by considering a mesh similar to the one
shown in Figure 2-3 on page 20, but instead of a 3x3x3 mesh we need to
consider one that represents a complete Blue Gene/L partition. The smallest
partition we can allocate on our Blue Gene/L system is one with 32 compute
nodes and a single I/O node. For the purposes of this section we are only
interested in the compute nodes and their layout on the mesh.

Consider each position on the mesh is represented by three dimensional
Cartesian coordinates X, Y, and Z. Consider the node at one corner of the mesh
(maybe think about this as the bottom left of the mesh) as having coordinates
X=0, Y=0, Z=0. Let us represent this node as having coordinate representation
(0,0,0). Note that it has only three connections to other cubes in the mesh:

1. To its right in the figure, to the cube with coordinates X=1, Y=0, Z=0 (1,0,0)

2. Above it in the figure, to the cube with coordinates X=0, Y=1, Z=0 (0,1,0)

3. Behind it in the figure, to the cube with coordinates X=0, Y=0, Z=1 (0,0,1)

Note: This is the difference between a mesh and a torus. In a torus
configuration on Blue Gene/L each node has six connections to its neighbor
nodes. In a mesh, some nodes on the edges of the mesh have fewer
connections. A Blue Gene/L partition may or may not have a torus topology.
On our small partition with 32 nodes we only have a mesh, not a full torus.
110 Unfolding the IBM ̂Blue Gene Solution

If we were to run our “Hello, world” program on this 32-node partition, where on
this mesh would each MPI task run?

The default allocation strategy is to start with the node with coordinates (0,0,0)
and allocate the MPI task with “rank=0” to this node. Then, keeping Y=0 and
Z=0, allocate subsequent MPI tasks to locations with increasing values of X.
When the largest value of X is reached, set X=0, Y=1 and work through all the X
values again, increasing Y each time until the maximum value of Y is reached,
then set X-0, Y=0, Z=1 and repeat the process.

We can demonstrate this by running a simple program, sanity.c, which was
provided by Jim Sexton. A part of this program is shown in Example 5-20. The
function calls that this code uses are described in Appendix B, “BG/L runtime
system calls” on page 331, but essentially we are interested in reporting each
MPI task’s coordinates on the mesh and can establish this information at run
time.

Example 5-20 Code fragment which reports topology information

....
#include <mpi.h>
#include <rts.h>
#include <bglpersonality.h>
int main (int argc, char **argv)
{
 int num_procs, my_rank;
 char location[BGLPERSONALITY_MAX_LOCATION];
 BGLPersonality personality;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

rts_get_personality(&personality, sizeof(personality));
 BGLPersonality_getLocationString(&personality, location);

 printf("MPI: %d/%d, Pers: <%d,%d,%d,%d>/<%d,%d,%d,%d>, Torus? X%1dY%1dZ%1d,
VN? %d, Mem: %3dMB(%d), Loc: %s\n",

 my_rank, num_procs,
 BGLPersonality_xCoord(&personality),
 BGLPersonality_yCoord(&personality),
 BGLPersonality_zCoord(&personality),

 rts_get_processor_id(),
 BGLPersonality_xSize(&personality),
 BGLPersonality_ySize(&personality),
 BGLPersonality_zSize(&personality),
 BGLPersonality_virtualNodeMode(&personality)+1,
 BGLPersonality_isTorusX(&personality),
 Chapter 5. Parallel environment 111

 BGLPersonality_isTorusY(&personality),
 BGLPersonality_isTorusZ(&personality),
 BGLPersonality_virtualNodeMode(&personality),
 BGLPersonality_DDRSize(&personality)/(1024*1024),
 personality.DDRModuleType,
 location);

....

Running this code reports the X, Y, Z values for each MPI task, and the first part
of the output from running this job in a default configuration is shown in
Example 5-21. The output is a single line from each MPI task reporting its (X,Y,Z)
coordinates (BGLPersonality_xCoord(&personality), yCoord and zCoord in the
code) and the size of the total mesh (xSize, ySize, and zSize in the code).

Example 5-21 Partial output from running job showing topology report

stdout[21]: MPI: 21/32, Pers: <1,1,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J10-U11
stdout[22]: MPI: 22/32, Pers: <2,1,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J06-U11
stdout[18]: MPI: 18/32, Pers: <2,0,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J06-U01
stdout[12]: MPI: 12/32, Pers: <0,3,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J17-U11
stdout[30]: MPI: 30/32, Pers: <2,3,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J07-U11
stdout[14]: MPI: 14/32, Pers: <2,3,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J09-U11
stdout[11]: MPI: 11/32, Pers: <3,2,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J05-U01
stdout[27]: MPI: 27/32, Pers: <3,2,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J03-U01
stdout[9]: MPI: 9/32, Pers: <1,2,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J13-U01
stdout[25]: MPI: 25/32, Pers: <1,2,1,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J11-U01
stdout[10]: MPI: 10/32, Pers: <2,2,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J09-U01
stdout[0]: MPI: 0/32, Pers: <0,0,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J16-U01
stdout[1]: MPI: 1/32, Pers: <1,0,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J12-U01
stdout[2]: MPI: 2/32, Pers: <2,0,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J08-U01
stdout[3]: MPI: 3/32, Pers: <3,0,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J04-U01
stdout[4]: MPI: 4/32, Pers: <0,1,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J16-U11
112 Unfolding the IBM ̂Blue Gene Solution

stdout[5]: MPI: 5/32, Pers: <1,1,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J12-U11
stdout[6]: MPI: 6/32, Pers: <2,1,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J08-U11
stdout[7]: MPI: 7/32, Pers: <3,1,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J04-U11
stdout[8]: MPI: 8/32, Pers: <0,2,0,0>/<4,4,2,1>, Torus? X0Y0Z0, VN? 0, Mem: 512MB(6), Loc:
R00-M0-Nc-C:J17-U01
....

So, consider the last line in the output: the MPI task with rank=8 has coordinate
values (0,2,0) and each MPI task reports the partition to be a 4x4x2 mesh.
Turning this information into a table, for the 4x4x2 mesh we are using in our
partition, the rank of MPI tasks map to locations in the torus as shown in
Table 5-7.

Table 5-7 The default task mapping for a 4x4x2 mesh

MPI task Torus location

0 (0,0,0)

1 (1,0,0)

2 (2,0,0)

3 (3,0,0)

4 (0,1,0)

5 (1,1,0)

6 (2,1,0)

7 (3,1,0)

8 (0,2,0)

9 (1,2,0)

10 (2,2,0)

until we reach:

15 (3,3,0)

16 (0,0,1)

...... and so on, for the remaining
MPI tasks all the way to:

31 (3,3,1)
 Chapter 5. Parallel environment 113

If we were to allocate the partition in Virtual Node Mode, what does actually
change? In Virtual Node Mode, each node on the mesh now runs two distinct
MPI tasks. In terms of Cartesian coordinates, this adds an extra coordinate T -
which can only take value 0 or 1. The default allocation policy is to start with X=0,
Y=0, Z=0, T=0, so let us represent this as (0,0,0,0), and work through all possible
values of X, Y, and Z before changing the value of T.

Assume we are going to run “Hello, world” on our 4x4x2 mesh, but this time
using Virtual Node Mode. We now have 64 MPI tasks, and the default mapping is
now as shown in Table 5-8.

Table 5-8 Default mapping for Virtual Node Mode in a 4x4x2 mesh

What this means is that MPI task 0 runs on the same compute node as MPI task
32, MPI task 1 runs on the same compute node as MPI task 33, and so on.

Instead of this, we might prefer that each (even, odd) pair of consecutively
numbered MPI tasks run on the same node. Some codes exhibit
communications locality in the sense that more communication takes place
between MPI tasks with similar MPI rank values than between tasks with widely
differing MPI rank values, and we might therefore be able to take advantage of
the greater bandwidth and lower latency available between two MPI processes

MPI task Torus Location

0 (0,0,0,0)

1 (1,0,0,0)

2 (2,0,0,0)

3 (3,0,0,0)

4 (0,1,0,0)

...... all the way to:

31 (3,3,1,0)

32 (0,0,0,1)

33 (1,0,0,1)

34 (2,0,0,1)

34 (3,0,0,1)

35 (0,1,0,1)

..... and ending up at:

63 (3,3,1,1)
114 Unfolding the IBM ̂Blue Gene Solution

running on the same node, which have greater requirements for communication
between each other than a random pair of MPI tasks might.

It’s possible to achieve this by changing the default allocation process using the
BGLMPI_MAPPING environment variable. For this case, if we were to use
BGLMPI_MAPPING=TXYZ as part of the submitjob or mpirun job submission
command, the allocation strategy would change for our particular Virtual Node
Mode example to the one shown in Table 5-9.

Table 5-9 Non-default mapping example in Virtual Node Mode

Another way of looking at this is to view the default mapping strategy we looked
at in the first place as equivalent to using BLGMPI_MAPPING=XYZT.

If neither the default nor the alternative mapping strategies meet the
requirements of a particular code, it is possible to specify an explicit mapping
strategy that should be used to map all the MPI tasks of a parallel job to the
mesh before starting the job. To accomplish this, a mapping file must be created
and used as part of the job submission command.

The mapping file is a text file that contains a line for each MPI task, in MPI rank
order. Each line contains four numbers: the X, Y, Z and T coordinates for that
particular MPI task.

Why might we want to use a mapping file?
One reason may be if we have a code that has complex intertask
communication, and we have performed some analysis on the communication
and used some mathematical tools to minimize the sum of all the separate
communication paths in the parallel job, which results in an optimal layout of the
MPI tasks.

The start of a simple mapping file is shown in Example 5-22. This file gives an
explicit location for each MPI task, but locates the first task at location (1,1,1,0)

MPI task Torus Location

0 (0,0,0,0)

1 (0,0,0,1)

2 (1,0,0,0)

3 (1,0,0,1)

...... all the way to:

62 (3,3,1,0)

63 (3,3,1,1)
 Chapter 5. Parallel environment 115

rather than the default location (0,0,0,0). The other MPI tasks are allocated to the
other locations in the mesh. The complete mapping file will contain one line for
each MPI task in the parallel job and each line needs to specify a unique location
for each MPI task.

The disadvantage of this mapping file is that it is specific to the mesh or torus
being used for the instance of the job we want to run. If we want to run the same
job on twice the number of nodes we need to construct a completely new
mapping file. Thus, it is generally likely that this mapping file will be constructed
by some sort of mechanized process rather than being constructed by hand for
each instance.

Example 5-22 The beginning of a MPI mapping file

jfollows@bgfe01:/bgl/jfollows/hello> cat hello.map
1 1 1 0
0 0 0 0
1 0 0 0
2 0 0 0
0 1 0 0
1 1 0 0
2 1 0 0
0 2 0 0
1 2 0 0
2 2 0 0
0 0 1 0
1 0 1 0
2 0 1 0
0 1 1 0
2 1 1 0
.....

The MPI mapping file is used in conjunction with the mpirun command by use of
the option -mapfile <mapping file name>, or -mapfile hello.map in our
particular example.

This explicit mapping may make a profound difference on the performance of
particular parallel codes. This is the reason for the note at the start of this
section: one way of improving code performance is to understand how MPI tasks
fit onto the topology of the Blue Gene/L torus network, analyze the
communication patterns of the entire parallel job, and then use a mapping
process to specify explicit placement for each MPI task.
116 Unfolding the IBM ̂Blue Gene Solution

5.4 Other application development tools
In addition to the compilers and the parallel execution environment, the
application developer needs tools to debug the program and to analyze its
performance. How to use some of these tools is described in detail in Chapter 6,
“Porting applications” on page 127. Here we give a broad overview of the
available tools.

5.4.1 The environment on the front-end nodes
The programming environment on the front-end nodes is a full SLES9 PPC
environment. Every tool that is available for that platform can be installed and
used, of course. The GNU compilers and many of the GNU tools are installed by
default. All of these tools will be located in their standard installation directories
as known from other Linux systems, so the GNU debugger, for example, will be
located in /usr/bin/gdb.

However, all of these tools operate only on the front-end node and not on the
Blue Gene/L system itself. Modifications to some of the standard tools are
necessary to support BG/L, and additional functionality is needed to interface
with your application program running on the Blue Gene/L compute nodes. This
is an area of active development and more and more tools will become available
over time.

5.4.2 Debuggers
The debugger that ships with the Blue Gene/L system is the GNU debugger gdb.
The GNU debugger has a built-in infrastructure to attach to remote debuggees,
which makes it ideal for a cross-compilation environment like Blue Gene/L.
Section 6.5, “Debugging” on page 196 describes how gdb is used on Blue
Gene/L.

Etnus, Inc. has recently announced the availability of their TotalView parallel
debugger for Blue Gene/L. This will probably be the debugger of choice for most
parallel programming projects on Blue Gene/L. TotalView is available on a wide

Note: To work in a Blue Gene/L environment, some modifications to the
vanilla GNU tools are necessary. These are performed as a GNU toolchain
patch during system installation. Refer to Blue Gene/L: Software Installation,
Configuration, and Administration, SG24-6744, for details on the GNU
toolchain.
 Chapter 5. Parallel environment 117

range of platforms and is very useful for debugging parallel applications. For
more information, see:

http://www.etnus.com/TotalView/

Both the GNU compilers and the IBM XL compilers support compiling with the -g
option to provide source-line level debugging. At least for the XL compilers, even
debugging optimized code is possible with -g.

5.4.3 Profiling
Applications on Blue Gene/L can be compiled and linked with the -p or -pg option
to provide profiling information for the standard UNIX profilers prof and gprof.
Currently, the Blue Gene/L runtime system does provide the call trees but does
not provide the timing information in the mon.out or gmon.out files. This is to be
fixed in an upcoming release of the BG/L driver, and by that time the profiling
information will be usable.

The xprofiler command, which is very convenient on AIX to graphically analyze
a gmon.out file, is not yet available for Linux on pSeries servers.

As a workaround, we found it very useful to do some application profiling for
single-node cases or moderately parallel runs on POWER4 hardware running
AIX. Here all the profiling tools work, including xprofiler, and you can identify
the critical regions of your code by using the data collected in this environment.
Although POWER4 and the Blue Gene/L compute nodes are of course different,
there is sufficient commonality between these platforms to allow some first-order
estimates on where the hot spots are located.

In 6.5.2, “Instrumenting function entry and exit” on page 196, we present a way to
add your own instrumentation to an application through options of the XL
compilers. This can also be used to get some function-level profiling information,
but it is not possible to get basic block profiling data using this technique.

5.4.4 BG/L hardware counters
The Blue Gene/L hardware includes some hardware performance counters,
similar to other POWER processors. On Blue Gene/L, most of the hardware
counters are related to communication on the various Blue Gene/L networks
because the on-chip interconnect hardware is a key aspect for the overall system
performance. But some of the counters also provide statistics on the arithmetic
and load/store performance of the processor, which is important to tune the
numerically intensive parts of the application.

The Blue Gene/L chip includes a Universal Performance Counter (UPC) unit that
implements 16 counter groups with 3 counters (A, B, C) per group. The counters
118 Unfolding the IBM ̂Blue Gene Solution

are 32-bit, so 48 32-bit counters are available. Alternatively, B and C can be
joined to provide 16 counters of 32-bit and 16 counters of 64-bit. In total, 328
different events (including FPU) can be counted.

Regarding the FPU counters, there are two counters per core and you can count
one load/store event (one of {Double LD, Double ST, Quad LD, Quad ST}) and
one arithmetic event (one of {Adds, Mults, FMA, All Quad Arithmetic Ops})
concurrently. To get all of the possible counters, you therefore need to perform
multiple runs with different counter setups.

There is a low-level API to set up and read the UPC counters, with a library in
libbgl_perfctr.rts.a and corresponding include files blg_perfctr.h and
bgl_perfctr_events.h. Appendix G., “Hardware counters” on page 369 contains
more details on the BG/L hardware counters.

On a higher level, the PAPI and HPMCOUNT performance analysis tools exploit
the UPC unit. Blue Gene/L implements PAPI version 2.3.4 and there are a
number of BG/L-specific PAPI events in that version.

5.4.5 The IBM High Performance Computing Toolkit
The IBM Advanced Computing Technology Center (ACTC) provides a set of tools
in the IBM High Performance Computing Toolkit, formerly known as the ACTC
toolkit. This toolkit is the strategic application development framework for
High-Performance Computing across IBM server platforms.

The IHPCT toolkit contains the following components:

� MP_Profiler for MPI performance measurements

This tool uses the PMPI profiling interface to collect summary statistics,
message size distributions, and source code traceback.

� Xprofiler and HPMCOUNT for CPU performance

xprofiler is a graphical tool to analyze gprof statistics. It displays the call
graph of an application using the following methodology:

– All functions are represented by boxes, and function calls are represented
by arrows between caller and callee labeled with the number of calls.

– The width of a box represents the time spent in the routine, including time
spent in all other routines called from that routine.

– The height of a box represents the time spent in the routine itself,
excluding any called routines.

Figure 5-3 shows an example of a call graph. It also shows an overview
window that can be used to navigate through a large call tree. It highlights the
area which is currently displayed in the main window and allows the user to
 Chapter 5. Parallel environment 119

move over the whole call graph. Xprofiler can also display the standard
gprof flat profile, as shown in Figure 5-4.

Figure 5-3 Xprofiler call graph display (with overview window)
120 Unfolding the IBM ̂Blue Gene Solution

Figure 5-4 Xprofiler flat profile display

– The Hardware Performance Monitor (HPM) framework within the HPC
toolkit comprises the hpmcount command and a libhpm.a library to access
the hardware performance counters described in 5.4.4, “BG/L hardware
counters” on page 118. You can gather statistics either for a complete
application (by running it under hpmcount control) or for a section of code
that is instrumented with calls to the library.

� PeekPerf, a common visualization and analysis GUI

All the ACTC tools plug into the PeekPerf GUI to provide a single coherent
user interface that complements the command-line usage of the tools. Source
code traceback and other analysis can be easily done through PeekPerf.
Figure 5-5 shows an example of MPI_Profiler statistics within PeekPerf.
 Chapter 5. Parallel environment 121

Figure 5-5 PeekPerf display of MPI_Profiler data.

� MIO, a modular I/O library

Not all of the ACTC tools are currently supported on Blue Gene/L, but it is
intended to eventually provide the complete IBM High Performance Computing
toolkit on the Blue Gene/L platform.

5.4.6 Third-party performance tools
A number of third-party tools are available for use with Blue Gene/L, or are in the
process of being ported to Blue Gene/L. Some of the applications that you might
find useful include the following:

� PARAVER (UPC @ U of Barcelona)

http://www.cepba.upc.es/paraver/

� Kit for Objective Judgement and Knowledge-based Detection of Performance
Bottlenecks, or KOJAK (ICL @ U of Tennessee and ZAM @ FZ Jülich)

http://www.fz-juelich.de/zam/kojak/

� Performance Application Programming Interface, or PAPI (ICL @ U of
Tennessee)

http://icl.cs.utk.edu/papi/
122 Unfolding the IBM ̂Blue Gene Solution

� Tuning and Analysis Utilities, or TAU (U of Oregon)

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

� Lightweight, Scalable MPI Profiling, mpiP (LLNL)

http://www.llnl.gov/CASC/mpip/

Check their Web sites for details if you are interested to using any of these tools.

5.5 Job management
This section provides information about some of the existing job management
tools than can be used in a Blue Gene/L environment.

5.5.1 LoadLeveler
At the time this redbook was written there was no off-the-shelf LoadLeveler
support on Blue Gene/L. A PRPQ now exists through which the Haifa research
version of Load Leveler on Blue Gene/L can be ordered. This is not the
LoadLeveler with all the functionalities for Blue Gene/L. The product version
should have the major functionalities by November. To obtain LoadLeveler by
request, the PRPQ number to use is P91220.

The announcement from within the Offering Tool on the Web can be found at:

http://w3-3.ibm.com/sales/ssi/OIAccess.wss

For search arguments use Product ID: P91120.

The final objective that’s being aimed at for a Scheduler on Blue Gene is no
different from that on other massively parallel systems, which is to maximize
system utilization with minimum response time for the submission of jobs:

� The resource allocation on Blue gene has to take into account not just the
size of the job, but also shape requested and connectivity (whether torus or
mesh). At the same time, it has to account for faulty resources like failed
nodes or defective wires.

� Both node and link allocation is to be managed by the scheduler. First, the
scheduler has to find all partitions that match the requested size and shape of
the job. Next, the scheduler looks at each of these partition to determine if
and how they could be wired. From all wireable partitions, the best partition is
then chosen. The criteria for the best partition could be kept flexible; for
example, it could be one with the minimum number of links.

On Blue Gene/L, the job management system is separated from the Blue Gene/L
hardware. The LoadLeveler (LL) daemons reside only on the front end nodes
 Chapter 5. Parallel environment 123

and the service node. LL for Blue Gene/L uses a set of APIs called Bridge APIs
to perform resource allocation and control the job running on the actual machine.
The LL on Blue Gene/L is comprised of an external scheduler that interacts with
the LL and replaces the LL internal scheduler, and mpirun is the serial program
that gets executed by the LL on the FEN; mpirun is basically what controls and
monitors the parallel job on the Blue Gene/L.

Currently, the LL on Blue Gene/L implements the First Come First Served
(FCFS) scheduling strategy and not the backfill technique. The main difference
between these two is that, in FCFS, the next job in the queue (whoever came
first in queue) gets scheduled, whereas in backfill, the scheduler looks in the
queue and finds a job whose requirements could be met at the time and
schedules that job. Also, there is no support for priority management at this time.

Once a user submits his job to the scheduler, the scheduler accepts the job to
the scheduling queue. The queue includes existing jobs that are already
scheduled to run and those that are waiting to be scheduled. The scheduler then
reads the queue and selects the next job to run. If the available resources meet
its requirements, a partition is allocated that meets the job’s requirements and a
FEN is selected on which the mpirun is launched. The mpirun in turn launches
the parallel job on the allocated partition. The mpirun monitors the job and the LL
monitors mpirun. When the job ends, the mpirun exits, and LL updates the job
state in queue and also removes the partition that was used by the job. The
partition remains initialized for reuse if possible in the next job allocation.

� Issuing llstatus command on the front end node lists information on the
LoadLeveler daemons running on the FEN. The Job Submission Script
requires knowledge of the name or IP of the service node and the back-end
mpirun location on the service node. The user has to ensure that the
environment is set for mpirun.

� llsubmit will submit a job command file (JCF). Quoting an example for JCF
from the user guide for LoadLeveler on Blue Gene/L and continuing with our
“Hello World” example, the LL script to submit the hello.rts executable is
shown in Example 5-23.

Important: In the current version, LL schedules jobs in the same order as they
come into the queue. This is not the most efficient way of scheduling, Backfill
scheduling is also being considered, but the current level does not support
backfill.

Note: At the time of writing, we did not have access to a system with
LoadLeveler installed to test out the scripts. The job script in Example 5-23
was not validated by submitting a job via LoadLeveler.
124 Unfolding the IBM ̂Blue Gene Solution

Example 5-23 Job Command File for Job Submission with LoadLeveler

#! /bin/ksh
@ job_type = parallel
@ executable = mpirun
@ arguments = -np 512 -mode cp -connect mesh -cwd /bgl/HELLO/ -exe
/bgl/HELLO/hello.rts
output is BG/L job stdout
@output = $(jobid)_job_output
error is BG/L job stderr and MPIRUN log
@error = $(jobid)_mpirun-log
@input = /dev/null
@initialdir = /bgl/HELLO/jcf/
#@ environment = $MMCS_SERVER_IP=ipaddress_server_name/node; \
BACKEND_MPIRUN_PATH=/bgl/local/bin/mpirun_be;
@ class = BGLClass
@ notification = complete
@ checkpoint = no
@ restart = no
@ queue

The JCF for Blue Gene/L is the same as for a regular serial LL job, but the
job_type is always parallel.

The keywords in the script shown in Example 5-23 have the following meanings:

� #@ job_type: Always parallel (though LL is launching a serial job, mpirun).

� #@ executable: Always mpirun. The full path of mpirun should be given here.

� #@ output: Blue Gene/L parallel job stdout.

� #@ error: Blue Gene/L parallel job stderr and mpirun progress log.

� #@ input: mpirun’s stdin. Since mpirun does not use stdin, this has to be
/dev/null.

� #@ initial_dir: The mpirun initial directory. Current working directory is
taken as the initail_dir by default.

� #@ environment: Has environment variables required by mpiun.

� #@ arguments: Key word to pass on the Blue Gene/L job requirements and
arguments to mpirun. In our example, the job requires 512 CPUs on a
co-processor mode system connected as mesh. The current working
directory is /bgl/HELLO and the executable is /bgl/HELLO/hello.rts.

Note: Key words such as total_tasks, node, task_per_node, task_geometry,
and so forth are illegal in a Blue Gene/L job command file since LL always
launches a single process job: mpirun
 Chapter 5. Parallel environment 125

If the user wants to submit to a specific partition -partition partition_name
should be added to the arguments.

LoadLeveler-related commands to monitor jobs include the following:

� llbgljob: Returns information on jobs submitted to the Blue Gene /L through
the LoadLeveler.

� llbglparts: Returns information regarding the partitions.

� llcancel: Cancel a submitted job.
126 Unfolding the IBM ̂Blue Gene Solution

Chapter 6. Porting applications

This chapter discusses the following:

� How to check whether your application can fit on Blue Gene/L, and what
changes you need to get it to run for system calls, timer calls, standard input,
and so forth.

� How to port and optimize each task of your application on a compute node
with memory alignment, double Floating Point Unit (FPU) usage, memory
access, math libraries, and so forth.

� How to take advantage of the communication networks using the MPI
implementation point-to- point and collective, compiler directives,
co-processor or virtual node mode, and so on.

� How to manage I/O operations.

� How to use a debugger.

6

© Copyright IBM Corp. 2005. All rights reserved. 127

6.1 Does your application fit on Blue Gene/L

Assuming you have an application that has been ported, so that it compiles using
either the GNU C Compiler or the IBM (XL) Visual Age C or FORTRAN compilers
and can run on a Linux/POWER system, then the question is can this application
be ported to and run on Blue Gene/L?

The answer to this question is normally yes. However, there are certain key
differences between Blue Gene/L and traditional high performance computer
systems which may need to be considered. Any of these differences may prevent
the application from being ported to Blue Gene/L directly, and may require some
code revision.

If you have an application that does not run on a Linux/POWER system and you
do not have immediate access to a Blue Gene/L system, performing the work to
port to Linux/POWER is likely to be productive. Once you have access to a Blue
Gene/L system, the work needed to port to Blue Gene/L will be reduced.

6.1.1 System call summary
The kernel that runs on the compute nodes of the Blue Gene/L system is called
the Compute Node Kernel (CNK). It implements only a subset of the POSIX
standard. The subset of system calls that are implemented are documented in
Blue Gene/L: Application Development, SG24-6745.

Codes which rely on system calls that are not supported by the CNK will need to
be modified.

Note: The Blue Gene/L system CPU is a powerPC, which means it uses big
endian to store multi-byte data in memory (as opposed to the little endian on
an x86 architecture). That aspect of application porting is beyond the scope of
this redbook, and it is one reason why we recommend first porting to a pSeries
Linux system.

Tip: The Blue Gene Run-Time System (BLRTS), also called the CNK,
implements the standard POSIX API (glibc 2.2.5 runtime library). It contains
approximately 5000 code lines in C++, and implements 30-40% of the Linux
system calls.
128 Unfolding the IBM ̂Blue Gene Solution

6.1.2 Processes and threads
The Compute Node Kernel does not support many of the common system calls
related to process and thread creation. A user application runs as a single
non-preemptable thread of execution on its processor, and the CNK will not
support multiple user threads running as part of the single user process.

The system call fork() is a method of creating another process. It causes a new
process to be created as a copy of the original one, which then explicitly
executes (exec()) a new program. The CNK supports a single user process
running on each processor. This means that it is not possible to create additional
processes using any of the standard methods such as fork() and exec().

What may be more unexpected, though, is the fact that programs which contain
system calls such as these can be compiled and built, with the end result being
what appears to be a valid binary executable. Example 6-1 shows a code
fragment containing a fork() call, and this code can be compiled on a front-end
node, an executable built, and a parallel job which uses this code can be
submitted for execution in the normal manner.

Example 6-1 Code fragment which will compile—but will not run—on Blue Gene/L

....
#include <sys/wait.h>

int main (int argc, char **argv)
{

 pid_t childpid;
 int retval;
 int status;

 childpid = fork();
....

The good news is that, in this particular case, the job fails and produces helpful
error messages. Example 6-2 shows the output files which result from running
this code: a zero-length stdout file is a clue that something went wrong.

Example 6-2 The output files which result from an attempt to run this invalid code

jfollows@bgfe01:/bgl/jfollows/sanity> ls -rtla R00-M0-N2_1-8758.*
-rw-r--r-- 1 jfollows jfollows 0 2005-02-23 14:52 R00-M0-N2_1-8758.stdout
-rw-r--r-- 1 jfollows jfollows 1366 2005-02-23 14:52 R00-M0-N2_1-8758.stderr
 Chapter 6. Porting applications 129

Example 6-3 shows part of the contents of the stderr file, which clearly explains
why the code did not run (one error message for each MPI task, because multiple
copies of identical code are running on multiple processors).

Example 6-3 The result of trying to run code which includes fork()

jfollows@bgfe01:/bgl/jfollows/sanity> cat R00-M0-N2_1-8758.stderr
stderr[0]: fork: Function not implemented
stderr[18]: fork: Function not implemented
....

The reason for this behavior is that Blue Gene/L has implemented a code stub for
the fork() call which simply causes the error message to be written to the stdout
file and then terminates the user process.

In Communication Co-processor Mode (which is the default mode of operation),
a single user process running on one processor (let’s name this CPU0) will
cause the second processor to act as an offload engine, causing the second
processor (CPU 1) to operate when system calls (such as MPI calls) are made.
This offload is transparent to the user process.

In Virtual Node Mode, each of the two processors on a node runs a separate
instance of the CNK and therefore a separate user process runs on each node.

Communication Coprocessor Mode with Computation Offload allows a user to
write code which will run on the second “offload” processor in addition to the
primary processor on the node. However, this is not an SMP implementation and
strict rules need to be followed to exploit this capability.

The design objective is to avoid running multiple processes at one time on the
compute node competing for the CPU time slices, and in particular daemons. In
traditional clusters, where nodes run a full-featured operating system and the
cluster software stack, the daemons can interrupt the execution of any process
or task at any time (and there is no way to predict the exact moment). Thus the
scalability of such environments, especially for executing massively parallel
applications, is very poor.

The clone() system call is normally used for creation of threads, because it
usually results in a new thread which shares the environment of the existing
process. Again, this call is not supported on Blue Gene/L.

Additional system calls (related to these calls) which are also not supported on
Blue Gene/L are:

� getppid()
� wait()
� waitpid()
130 Unfolding the IBM ̂Blue Gene Solution

The full Linux kernel includes a concept of “capabilities” in which processes
inherit capabilities from their parent processes, and in which processes have the
ability to query and modify their own and other processes’ capabilities, subject to
system-wide limits.

None of these system calls are supported on the Blue Gene/L CNK:

� capget()
� capset()
� getpriority()
� ioctl()
� ioperm()
� ipc()
� nice()
� prctl()
� ptrace()

Related to this, POSIX signals are used in the full Linux kernel to send
notification of events between processes. POSIX signals are also referred to as
asynchronous signals. On the Blue Gene/L CNK, since there is only one process
that is running all the time, many system calls relating to asynchronous signal
handling are not provided, in particular:

� sigaction()
� sigprocmask()
� sigpending()
� sigsuspend()
� sigaltstack()

ANSI C signal handling is supported, but since there is only one process, signals
can only be sent by a process to itself:

� kill(getpid(), signum) is valid (this is a POSIX function call), but only
because it sends a specific signal from a process to itself.

� signal(signum, handler) can be used to install a signal handler for a specific
signal number.

6.1.3 File system calls
The CNK provides a single-user environment with no file system, and system
calls that relate to the file system environment in a full Linux implementation are
not supported, in particular:

� chroot()
� mount()
� mmap()
 Chapter 6. Porting applications 131

These calls modify the file system environment and do not apply to the CNK
because there is no file system supported by the CNK. The only file system
support is provided by the I/O node, and the CNK cannot modify the I/O node’s
file system environment.

6.1.4 I/O-intensive applications
All I/O operations initiated by the compute nodes are in fact performed by the I/O
nodes. This is transparent to user code; the user code still contains the calls to
the system I/O routines. This is sometimes referred to as function shipping
between the compute nodes and the I/O nodes. The functions are initiated on the
compute nodes but actually carried out on the I/O nodes.

Many codes are written so that all I/O operations are performed by a single user
process. In this case, the performance of the I/O operations will be limited by the
performance of the single I/O node which handles the I/O operations on behalf of
this particular process. The I/O node has a single Gigabit Ethernet connection
over which all the I/O operations are carried.

The number of I/O nodes in a Blue Gene/L rack can vary. For the most
I/O-intensive configurations, one I/O node can be used for every 8 compute
nodes. At the other end of the scale, one I/O node can serve for every 64
compute nodes.

Parallel applications that spread their I/O workload across multiple user
processes can take advantage of multiple I/O nodes. The aggregate
performance of multiple I/O nodes may be limited by the performance of the file
system serving the Blue Gene/L cluster, which could be a single NFS server in
some implementations - this server could represent a serious bottleneck to the
aggregate I/O performance.

There is no simple solution to this challenge; if a particular application makes
heavy use of I/O operations, then the I/O performance may present a barrier to
good performance when running on a Blue Gene/L system. The way the
application uses I/O should be analyzed.

If a single process performs all the I/O for the entire parallel application, the
performance of a single Blue Gene/L I/O node will be important. If multiple
processes perform I/O, then these processes may need to be mapped to ensure
they all use different I/O nodes (the default mapping may lead to them sharing
the same I/O node) and the aggregate performance of the file system will limit
the performance of this application.
132 Unfolding the IBM ̂Blue Gene Solution

6.1.5 Networking support
The Blue Gene/L compute nodes do not have any IP addresses or IP host
names associated with them; this support is not necessary and therefore not
provided by the CNK (which does not implement the IP stack anyway).

Code that assumes full IP socket support is available may need to be modified.
The redbook Blue Gene/L: Application Development, SG24-6745 lists the socket
system calls which are available on Blue Gene/L, but even this list needs to be
treated with caution: calls such as accept() and bind() are only applicable to
code running on the I/O nodes and user application codes are written for the
compute nodes, which do not support these calls.

Since the CNK does not provide any IP support, system calls that depend on
networking support are not provided, including:

� gethostbyname()
� gethostbyaddr()
� res_query() and other resolver-related calls

6.1.6 Timer support
Linux provides each process with three different interval timers. The timers can
be set with timer values, but they decrement to zero at different rates, depending
on whether the process is executing or not, or whether the system is executing
on behalf of the process or not. Different signals are sent to the calling process
on expiration of different timer types. On Linux, these timer definitions are:

ITIMER_REAL Decrements in real time, and delivers SIGALRM upon
expiration.

ITIMER_VIRTUAL Decrements only when the process is executing, and
delivers SIGVTALRM upon expiration.

ITIMER_PROF Decrements both when the process executes and when
the system is executing on behalf of the process. Coupled
with ITIMER_VIRTUAL, this timer is usually used to
profile the time spent by the application in user and kernel
space. SIGPROF is delivered upon expiration.

For a Blue Gene/L compute node, if all three timers were supported, they would
always decrement at the same rates because the single process executes all the
time (so virtual time equals real time) and because there is no time spent in
kernel space.

However, Blue Gene/L CNK actually only supports two of the timers:
ITIMER_REAL (which sends SIGALARM when it expires), and ITIMER_PROF
(which sends SIGPROF when it expires). ITIMER_VIRTUAL is not supported.
 Chapter 6. Porting applications 133

Furthermore, only one timer can be enabled at any moment, and the only reason
for supporting more than one timer type is to allow alternative signals to be sent
when a timer expires.

6.1.7 STDIN support
Some codes are written to read data from standard input (STDIN) when they
execute. This standard input has been provided to the program as part of the
invocation command used to run the parallel job. So a parameter or a file is
specified on the command which appears to the parallel task as a pipe of data
presented to its standard input file descriptor.

Some implementations of mpirun allow the data supplied as part of the invocation
command to be provided to one or all of the MPI processes in the parallel job as
STDIN. Whether this data is provided to none, to one, or to all of the MPI tasks, is
an option on the mpirun command.

On IBM SP systems, the Parallel Environment command poe ensures (in its
default mode of operation) that standard input, standard output, and error
streams are routed between the home node (the node on which the poe
command is issued) and all the other nodes running MPI tasks as part of the
parallel job, using TCP/IP sockets. The MP_STDINMODE environment variable
allows this default behavior to be modified so that only one or none of the MPI
tasks receives a STDIN pipe which they can read. The same behavior is
exhibited by jobs which run under the control of LoadLeveler; typically, shell
scripts which invoke parallel programs are implicitly using the poe command.

Blue Gene/L does not provide any support for STDIN pipes to be available to the
individual MPI tasks when they execute on the compute nodes. There is no way
of associating a command or a file which forms part of the mpirun or submitjob
commands as STDIN data to one or more parallel MPI tasks.

If code is written in FORTRAN. it can take advantage of the fact that FORTRAN
will use a file fort.5 in the current working directory of the program in place of
STDIN.

Otherwise, the code which currently reads from the standard input file descriptor
will have to be modified to perform an explicit file open() command and read
input data from a file.

6.1.8 Memory
There is support for virtual memory on Blue Gene/L nodes, but it is important to
clearly understand what this means: there is a single, flat, fixed-size virtual
address space shared between the operating system kernel and the application
134 Unfolding the IBM ̂Blue Gene Solution

program. This address space is limited to 512 MB in Coprocessor Mode and
256 MB in Virtual Node Mode, and there is no swapping. All library calls require
static linking, including the MPI library, which further reduces the amount of free
memory which can be used by the application program itself.

Some application code makes assumptions which are not valid on Blue Gene/L,
for example, that a 32-bit virtual memory address space with 2 GB or 3 GB of
addressable virtual memory is available, the 32-bit Linux model. Codes like these
will not run on Blue Gene/L without modification.

Related to this is a very important point: codes should not allocate memory which
they do not use. On a system with a 4 GB virtual address space and with
demand paging it may be acceptable to allocate an array which is larger than
necessary, even if the system has far less RAM (real) memory than 4 GB,
because real memory will only be used when required. On Blue Gene/L this is
the wrong thing to do, because every virtual memory allocation maps to a portion
of the available real memory (no paging space).

Many parallel codes contain arrays describing the layout of the parallel execution
environment (mapping), and these codes may not scale to large numbers of
nodes without modification because these arrays consume too much memory.
This memory overhead was insignificant on systems with large amounts of
memory per node and small numbers of nodes. So some codes which work on
relatively small Blue Gene/L configurations will run out of memory as the number
of processors increases.

For the current implementation, the Compute Node Kernel is less than 100 kB in
size, leaving the rest of the memory for the application program image (which
includes the statically-linked libraries) and the application’s heap and stack
space.

Although the kernel code itself is protected from modification by the user
application code by use of the PowerPC MMU, some system resources such as
the torus network are mapped into “user space” for performance reasons and
can therefore be modified and possibly corrupted by incorrect user code.

Notes:

� The I/O node is the same HW as the compute node, but the I/O node will
always be in co-processor mode.

� It is incorrect to say that there is no paging support in the CNK: the physical
memory is mapped to 256 MB pages. These pages cannot be swapped out
to disk to make room for other memory pages, so the virtual address space
is limited to the 512 MB physical address space.
 Chapter 6. Porting applications 135

Coding errors which modify system resources incorrectly can lead to unexpected
error messages or complete hangs of the CNK. Recovery is relatively simple
(rebooting the partition and reloading the nodes is a fast operation), but code
debugging may not be simple if this happens. The memory protection
mechanisms and associated diagnostic information may not be available in the
way it would be for code that attempts to access invalid memory areas on other
operating systems such as AIX or Linux.

Coding errors that result in memory leaks will be more visible on Blue Gene/L
systems than on systems with different memory models. A memory leak will
probably manifest itself for the first time as an apparent failure in a MPI call,
because the MPI routine is unable to access or allocate the memory required for
that call.

Certain system calls that relate to virtual memory on full Linux kernel
implementations are not supported on the CNK, in particular:

� mmap()
� mlock()
� madvise()
� mremap()
� msync()
� mprotect()

6.1.9 SMP
There is no SMP support on Blue Gene/L. Do not attempt to compile code with
any of the compiler -qsmp options, because errors such as the following will
result.

Example 6-4 Attempting to use invalid compiler options

jfollows@bgfe01:/bgl/jfollows/sanity> make
/opt/ibmcmp/vac/7.0/bin/blrts_xlc -O2 -qsmp
-I/bgl/BlueLight/ppcfloor/bglsys/include -L/bgl/BlueLight/ppcfloor/bglsys/lib
-o sanity.rts sanity.o -lmpich.rts -lmsglayer.rts -ldevices.rts -lrts.rts
-ldevices.rts -lrts.rts
/bgl/BlueLight/ppcfloor/blrts-gnu/bin/powerpc-bgl-blrts-gnu-ld: cannot open
 libraries = -lxlopt: No such file or directory
make: *** [sanity.rts] Error 1

In Example 6-4, the compiler generated the SMP code, but the linker could not
find any SMP libraries so the combination compile/link process failed.

Even though the single chip at the heart of the Blue Gene/L system contains two
processors, these processors do not run as an SMP system. There is no
136 Unfolding the IBM ̂Blue Gene Solution

hardware support for coherence of data between each of the L1 cache memories
of each processor.

6.2 Single CPU - porting serial applications
Blue Gene/L architecture is targeted for massive parallel applications.
Nevertheless, it is essential to get the best performance from individual
processors. This section deals with porting and tuning the serial code, providing
the necessary information to port and tune on Blue Gene/L compute nodes.

Issues that affect you on Blue Gene/L
The issues most frequently encountered on Blue Gene/L during application
porting are:

� Memory size limitations; see 6.1.8, “Memory” on page 134.

On Blue Gene/L it is very useful to know the address of the top of the heap in
order to find the memory leaks and avoid overlapping the data in the heap
and the stack. The C function sbrk(0) shows the address of the top of the
heap; see “Memory addressing” on page 160.

� Time functions.

Some standard time functions like getrusage() can be meaningless on BG/L
since there is no system time. Refer to “Time functions” on page 174 for more
details.

� No standard input in console mode; see 6.1.7, “STDIN support” on page 134.

� Limited system calls.

– For a list of the supported and unsupported system calls, see 6.1, “Does
your application fit on Blue Gene/L” on page 128 and also refer to the
redbook Blue Gene/L: Application Development, SG24-6745.

– Since there are no shell utilities on the compute node and no /usr/bin
directory, you must replace system calls that call shell utilities in your
application.

� Limited header files, not located in /usr/include.

Check the /bgl/BlueLight/ppcfloor/bglsys/include directory (depending on your
system installation) and the header files default directories in
/etc/opt/ibmcmp/blrts.cfg.

� Undefined standard Linux and libc functions.

Check existing libraries for Blue Gene/L runtime using the -V flag of the link
command. Use the nm -e command on those libraries for a workaround.

� No shared memory; see 6.1.9, “SMP” on page 136.
 Chapter 6. Porting applications 137

� Compiling with default XL compilers on the front-end node, and not with
customized versions for Blue Gene/L.

Use the Blue Gene/L XL compilers named blrts_xxx, where xxx corresponds
to the standard XL name. Modify your makefile accordingly, as shown in
Example 6-6 on page 139.

6.2.1 Porting serial code on Blue Gene/L
To build applications for Blue Gene/L, you can use the IBM XL compilers or GNU
compilers. The IBM XL compilers are available on the Linux front-end nodes
(POWER architecture only). The IBM XL compilers have options that support
Blue Gene/L-specific hardware features, and these compilers are recommended
for the best performance.

The IBM XL compilers are available for applications written in FORTRAN, C, and
C++. Most of the XL compiler options on Blue Gene/L are the same as options
on other IBM platforms. For more details about XL compilers, see “XL compilers”
on page 86.

Generating code for AIX, Linux or Blue Gene/L
Each hardware and operating system often needs special implementations. The
XL compiler provides precompiler keywords __aix__, __linux__, and __blrts__
to differentiate the targeted runtime (Example 6-5).

Example 6-5 How to differentiate between AIX, Linux, Blue Gene/L in your code

#if defined(__aix__)
<aix code here>
#elif defined(__linux__)
<linux code here>
#endif
#if defined(__aix__)
<aix code here>
#elif defined(__linux__)
<linux code here>

Note: The XL compiler for Blue Gene/L is based on the standard compiler for
Linux pSeries. The runtime kernel (CNK) running on the compute node and
the corresponding XL compilers have limited features (system calls, header
files, profiling, shell utilities) compared to a Linux on pSeries system.

Therefore, we recommend that you first port and profile the serial part of your
application on a standard Linux pSeries in a standard environment. This can
be done on a front-end node. You thus reduce the porting effort on Blue
Gene/L, which may be more cumbersome.
138 Unfolding the IBM ̂Blue Gene Solution

#elif defined(__blrts__)
<Blue Gene/L code here>
#endif
#if defined(__aix__)
<aix code here>
#elif defined(__linux__) || defined(__blrts__)
<common linux and Blue Gene/L code here>
#endif

Compiling with the right compiler for Blue Gene/L architecture
The XL compilers for Blue Gene/L have been customized for the runtime
environment of the compute node. These customized versions are available on
the Linux front-end nodes and are named blrts_xxx, where xxx corresponds to
the standard XL name. These versions are located in /opt/ibmcmp.

The detailed options, the include directories and the libraries for blrts_xxx
compilers are listed in the configuration file: /etc/opt/ibmcmp/blrts.cfg.

Add the definitions to your makefile as shown in Example 6-6.

Example 6-6 Makefile modification

FC = blrts_xlf # Fortran compiler
CC = blrts_xlc # C compiler
BGL_SYS = /bgl/BlueLight/floor/bglsys
MPI_INC = -I$(BGL_SYS)/include
NOMPI_LIB = -L$(BGL_SYS)/lib -lmsglayer.rts -lrts.rts -ldevices.rts
MPI_LIB = -L$(BGL_SYS)/lib -lmpich.rts -lmsglayer.rts -lrts.rts -ldevices.rts

Blue Gene/L applications are always built by cross-compiling on the front-end
nodes. These nodes (running Linux) also have native XL compilers: xlf, xlf90,
xlc, xlC. On a pSeries Linux system, these compilers are used to build
applications that will run on the pSeries Linux systems, not on Blue Gene/L.
Note: These compilers are installed in the same directories as Blue Gene/L
customized versions, but do not have the blrts_ prefix added to their name.

Enabling Single Instruction Multiple Data (SIMD) instructions
The Blue Gene/L processor has a special set of instructions called SIMD
instructions that use the double FPU (or Oedipus architecture). Appendix B,
“BG/L runtime system calls” on page 331 contains the SIMD instruction set for
Blue Gene/L processors.

The design of the FPU is very different from POWER4 and POWER5
processors, which have two independent load/store units, two 64-bit integer units
and two independent 64-bit FPUs. The Blue Gene/L ASIC core only has one
 Chapter 6. Porting applications 139

load/store unit, one 32-bit integer unit and one 64-bit double FPU. For more
details on the Blue Gene/L processor, see 2.2.1, “Processor – System-on-a-chip
– the PPC440” on page 27.

On Blue Gene/L, normal PowerPC assembler instructions will use the primary
floating point pipe. To benefit from the second pipe, special assembly
instructions must be generated using the following compiler options:

-qarch=440d Generates parallel instructions for the 440d Double FPU.

-qtune=440 Optimizes object code for the 440 family of processors.

-O3, -O4 or -O5 The minimum optimizing level to generate SIMD
instructions is -O3.

The XL compiler optimizer consists of two major parts: the Toronto Portable
Optimizer (TPO) for high level inter-procedural optimization, and the Toronto
Optimizing Back End with Yorktown (TOBEY) for low level back end
optimization. SIMD instructions occur in both optimizers.

The TOBEY for SIMD instruction generation is activated by default for -O3, -O4
and -O5. The TPO SIMD level is added when using -O4 and -O5. Actually, it is
-qhot that does it, but -O4 and -O5 automatically call -qhot (see 5.2, “XL
compilers” on page 86).

For some applications, the compiler generates a more efficient code without the
TPO SIMD level. If you have statically allocated arrays, and a loop in the same
routine, you should call TOBEY with -qhot or -O4. Nevertheless, on top of SIMD
generation from TOBEY, -qhot enables optimizations which may alter the
semantic of the code and on rare occasions may generate less efficient code,
and -qhot=simd allows you to suppress some of these optimizations.

To enable and analyze the SIMD instructions for Blue Gene/L processor, there
are three steps:

1. Start to compile with the following:

-g -O3 -qstrict -qmaxmen=-1 -qarch=440d -qtune=440

• We recommend using -qarch=440d -qtune=440, in this order.

• The compiler only generates SIMD instructions from -O3.

• -qstrict ensures that the optimizations done by -O3 do not alter the
semantic of the program.

• It is always recommended to set -g as an option for the compilation
and linking. Contrary to many other compilers, the -g option has no
effect on the optimization level with the XL compilers; it only adds
symbol tables.
140 Unfolding the IBM ̂Blue Gene Solution

2. Increase the optimization level, call the high level inter-procedural optimizer:

-O5 (link time, whole-program analysis and SIMD
instruction)

-O4 (compile time, limited scope analysis and SIMD
instructions)

-O3 -qhot=simd (compile time, less optimization and SIMD instructions)

3. Tune your program:

Check the SIMD instruction generation in the object code listing (-qsource
-qlist).

Use compiler feedback (-qdebug=diagnostic -qhot) to guide you.

Help the compiler with extra information (directives and pragmas).

Modify algorithms (use more stride-one memory accesses, data alignment).

Details and examples (especially for step 3) are provided in 6.2.3, “Memory
alignment, aliasing, and versioning” on page 146, and 6.2.4, “Exploiting the
double FPU” on page 150.

Disabling SIMD instructions
As already described, the architecture option -qarch=440 generates generic code
for PPC440 processors, without special instructions for the double FPU. The
compiler generates normal load/store operations and floating point instructions
that only use the primary FPU.

The porting experience on Blue Gene/L has shown that most real applications
run more efficiently if all the routines are compiled with -qarch=440 as the default
architecture; the -qarch=440d should be tried only for performance-critical
routines

To get the best performance out of the Blue Gene/L processor, we recommend
getting through the following stages:

1. Start to compile without the SIMD instruction:

Compiler options: -g -O -qmaxmen=-1 -qarch=440 -qtune=440

2. Turn on level 3 optimization (optionally you can use -qstrict):

Compiler options: -g -O3 [-qstrict] -qmaxmen=-1 -qarch=440 -qtune=440

3. Build a flat profiling file (refer to “The profiling file” on page 175):

Compiler options: -g -O3 [-qstrict] -qmaxmen=-1 -qarch=440 -qtune=440
-qdebug=function_trace [or -pg]
 Chapter 6. Porting applications 141

4. Enable the SIMD instruction and build a flat profiling file:

a. Compiler options: -g -O3 [-qstrict] -qmaxmen=-1 -qarch=440d
-qtune=440

b. Compiler options: -g -O3 [-qstric] -qmaxmen=-1 -qarch=440d
-qtune=440 -qdebug=function_trace

5. Compare the profiling files and determine the performance-critical routines.

6. For performance-critical routines, apply the process described in “Enabling
Single Instruction Multiple Data (SIMD) instructions” on page 139.

7. Turn off the SIMD instructions for some routines:

– To completely disable the SIMD instruction: -qarch=440 -qtune=440

– To only disable TPO SIMD instructions:

• For the entire routine: -qhot=nosimd

• For a loop: add in the source code just before the loop

In C code: #pragma nosimd

In FORTRAN code: !IBM* NOSIMD

– To disable the TOBEY SIMD instruction and keep the TPO SIMD level:

• Less aggressive -qdebug=nmerge

• Completely -qdebug=nhummer:ncmplx

8. Link with the math libraries (refer to “Math libraries” on page 168).

6.2.2 Obtaining and understanding an object code listing
There are a number of reasons why you might want to stop a compiler from
generating SIMD code. But first, you need to understand the information returned
by the compiler. The problems the compiler faces are complex, which makes the
messages complex. Therefore, you need to know how to obtain and understand
the object code listing. This listing will enable you to understand the impact of
compiler options and identify compiler issues.

Note: This is not supported, and it may not work. Try it as your own risk.

Note: To obtain the best results, it is important to have a performance profile
for your application. This capability is under development on Blue Gene/L and
will be limited by the Compute Node Kernel. Thus, we recommend profiling on
Linux pSeries system (front-end node or similar). This method is usually
sufficient to point out the main issues and the critical routines.
142 Unfolding the IBM ̂Blue Gene Solution

The option -qdebug=diagnostic of the XL compiler provides a report about the
SIMD instruction generation. This report is part of the high order transformation
module (-qhot). For many real applications, the only way to control the efficiency
of the code is to search the SIMD instructions in the pseudo-assembler code
within the object listing. The complete list of the SIMD instructions can be found
in Appendix C, “Floating point instruction set” on page 341. A quick glance at the
object listing file allows you to detect SIMD instructions.

You can obtain an object listing file by adding the -qsource -qlist options at
compile time. The options -qattr -qxref provide additional information about
attributes and cross references. With these options, the compiler will create a
listing file with the same prefix as the file being compiled, but with a .lst
extension.

The listing file contains several sections, depending on the compiler options:

Option section Lists the compiler options used for the compilation.

Source section (From the -qsource option) lists the entire source code.

Attribute and cross reference section
(From the -qxref -qattr options) lists all identifiers that
appear in the program. For large applications with
hundreds or thousands of variables, this section can be
huge and can make the listing file unreadable. Therefore,
we advise only applying the cross-reference options for
small programs or test cases.

Object section (From the -qlist option) lists the pseudo-assembler code
generated. The pseudo-assembler provides the
assembler instructions, the function calls, and the register
usage. Unlike the pure assembler code provided with the
-s option of the compiler, the pseudo-assembler is
completely faithful to the code generated by the compiler.

Even if a deep understanding of the pseudo-assembler is only for compiler
experts, the listing file, as mentioned, allows you to understand the impact of the
compiler options or to identify potential compiler issues. A quick overview, for
example, gives information about the loops unrolling and SIMD instructions (see
Example 6-7).

Example 6-7 FORTRAN routine in daxpy.f file

1 subroutine daxpy_stride1(n, x, y, alpha)
2 implicit none
3 integer i,n
4 real(8) alpha, x(*), y(*)
5 do i=1,n
6 y(i) = y(i) + alpha*x(i)
 Chapter 6. Porting applications 143

7 enddo
8 return
9 end

The routine was compiled with optimization for PPC440 and no loop unrolling.
Suppressing the unrolling option allows keeping the object code small. The
command used is the following:

blrts_xlf90 -O2 -qsource -qlist -qnounroll -qarch=440d -qtune=440 -c daxpy.f

This generates the object section shown in Example 6-8.

Example 6-8 daxpy.lst file

| 000000 PDEF daxpy_stride1
1| PROC .n,.x,.y,.alpha,gr3-gr6
0| 000000 addi 38A5FFF8 1 AI gr5=gr5,-8,ca"
5| 000004 lwz 80030000 1 L4A gr0=n(gr3,0)
0| 000008 addi 3864FFF8 1 AI gr3=gr4,-8,ca"
5| 00000C cmpwi 2C000000 1 C4 cr0=gr0,0
5| 000010 bclr 4C810020 1 BF CL.7,cr0,0x2/gt ,taken=20%(20,80)
0| 000014 mtspr 7C0903A6 2 LCTR ctr=gr0
0| 000018 lfd C8660000 1 LFL fp3=alpha(gr6,0)
6| 00001C lfd C8050008 1 LFL fp0=y(gr5,8)
6| 000020 lfdu CC230008 1 LFDU fp1,gr3=x(gr3,8)
6| 000024 fmadd FC03007A 1 FMA fp0=fp0,fp3,fp1,fcr
6| 000028 bc 43400018 0 BCF ctr=CL.21,taken=0%(0,100)
6| CL.22:
6| 00002C lfd C8250010 1 LFL fp1=y(gr5,16)
6| 000030 lfdu CC430008 1 LFDU fp2,gr3=x(gr3,8)
6| 000034 stfdu DC050008 1 STFDU gr5,y(gr5,8)=fp0
6| 000038 fmadd FC0308BA 1 FMA fp0=fp1,fp3,fp2,fcr
0| 00003C bc 4320FFF0 0 BCT ctr=CL.22,taken=100%(100,0)
6| CL.21:
6| 000040 stfdu DC050008 1 STFDU gr5,y(gr5,8)=fp0
9| CL.7:
9| 000044 bclr 4E800020 0 BA lr

--
C1 C2 C3 C4 C5 C6 C7

The left-hand column (C1) shows the corresponding source line number. The
second column (C2) contains the relative instruction address, and the third
column (C3) contains the instruction. The fourth column (C4) contains the
instruction operands.

The fifth column (C5) is a number indicative of the number of cycles to execute
the instruction. A zero means the instruction can be overlapped with previous
instructions.
144 Unfolding the IBM ̂Blue Gene Solution

The sixth column (C6) provides pseudo instructions and the seventh column (C7)
contains register use, and the functions calls.

To locate a loop, we can look for a BCT instruction that branches back to a label
and confirm this by checking line numbers. In our example, there are two BCT
instructions. The relevant one is the second one with the additional hint
taken=100% (branch CL.22).

Before entering the loop, the loop counter is loaded using a mtspr (move to
special register) instruction at address 014, and the constant alpha is loaded into
fp3 register at 018. We also set up registers pointing to arrays y and x (00 through
08).

Starting at address 01C, y() is loaded into fp0. The lfd instruction loads a double
(8 bytes) into a floating-point register. Then the lfdu instruction loads x(i) into fp1
and also updates the register pointer to x(i). A floating-point multiply-add (fmadd
instruction at 038) is initiated to generate the new value for y(i) in fp0.

Then the main loop contains two load, one store, and one multiply-add
instructions. The bc conditional branch tests the counter and branches back to
CL.22 if appropriate. When we do not branch, we still need to store the result of
the last FMA, hence the stfdu following CL.21.

A list of SIMD instructions can be found in Appendix C, “Floating point instruction
set” on page 341, and a complete description of the instruction set can be found
in AIX 5L Version 5.3, Assembler Language Reference, SC23-4923.

Using an object listing to overview code generation
1. Compile with -qsource -qlist.

2. For each loop:

a. Take a line with an operation and note the number.

b. Find the corresponding lines in the object section by searching a string
composed of the line number to which a pipe sign (|) is appended.

Note: These numbers (in C5) should not be used to estimate execution time
from cycle times.

Note: Some instructions associated with the loop appear to be outside the
loop code. This is caused by the instruction scheduling knowledge built in to
the optimizer.
 Chapter 6. Porting applications 145

c. The main body of the loop lies between keyword CL.xx and BCT or BT in the
sixth column of pseudo-assembler; choose the one with the highest taken
value (in column seven on the same line of branch instruction).

d. Search for SIMD instructions.

e. Count the number of duplicated operation instructions (fmadd, fpmadd, and
so forth) in order to find out how many times the loop has been unrolled.
The number of unrolling has to be a multiple of two for SIMD instructions.
Unrolling is needed to keep feeding the FPU pipes; six or eight usually is a
good number.

6.2.3 Memory alignment, aliasing, and versioning
This section describes how to remove potential memory (mis)alignment issues
and memory conflicts. Memory alignment and avoiding memory conflicts are
fundamental concepts on Blue Gene/L that are crucial to taking advantage of the
double FPU.

Memory alignment
Let us stress once more that you need to use the two floating point pipes of the
double FPU in order to get optimal performance from a Blue Gene/L processor.
All double FPU instructions operate on double precision (8-byte) data. The
double FPU can do a great variety of operations on data in the primary and
corresponding secondary register, for example, parallel addition, parallel
multiple-addition, and so forth.

The first step in getting good performance from the double FPU is to get data into
the primary and secondary registers as efficiently as possible, using a quadword
load instruction. The PPC440 hardware architecture allows you to load a
quadword per cycle: 8 bytes in the primary register and 8 bytes in the
corresponding secondary register. The assembler instruction is lfpdx.

The compiler will generate quadword loads and stores instructions from -O3
-qarch=440d -qtune=440 options. The compiler can also generate separate
instructions to load a primary register (lfd, lfdx, lfdu, lfdux instructions) and a
secondary register (lsdx, lsdux instruction). There is only one load-store unit and
therefore it is essential to get quadword loads and stores for efficient use of the
double FPU.

Note: In order to be able to feed the double FPU of a Blue Gene/L processor,
it is very important to generate quadword (16-byte) load and store instructions.
The first 8 bytes must be aligned on a 16-byte boundary; otherwise, an
alignment exception will be generated and the application will fail with a
runtime error.
146 Unfolding the IBM ̂Blue Gene Solution

The compiler will not generate quadword load and store instructions unless it is
sure that is safe to do so. For non-pointer local and global variables, the compiler
knows when this is safe. To allow the compiler to generate these parallel loads
and stores for accesses through pointers, you should include code that tests for
correct alignment, and gives the compiler hints.

You can use the C/C++ __alignx built-in function or the FORTRAN CALL ALIGNX
to inform the compiler that the incoming data is correctly aligned according to a
specific byte boundary, so it can efficiently generate loads and stores. The
function takes two arguments, where the first argument is an integer constant
expressing the number of alignment bytes (this must be a positive power of two),
and the second argument is the variable name, typically a pointer to a memory
address.

The C/C++ prototype for the function is:

void __alignx (int n, const void *addr)

where n is the number of bytes. For example, __align(16, y) specifies that the
address y is 16-byte aligned.

In FORTRAN, the built-in subroutine is ALIGNX(K,M), where K is of type
INTEGER(4), and M is a variable of any type. When M is an integer pointer, the
argument refers to the address of the pointee.

In Example 6-9 (C/C++) and Example 6-10 (FORTRAN), we specify to the
compiler that the variables x and y are aligned along 16-byte boundaries.

Example 6-9 The use of __alignx function in C program for quadword instructions

void daxpy(int n, double *x, double *y, double alpha)
{
int i;
__alignx(16,x);
__alignx(16,y);
for (i=0; i>n; i++) y[i] = y[i] + alpha*x[i];
}

Example 6-10 The ALIGNX routine (FORTRAN) for quadword instructions

subroutine daxpy_fortran(n, x, y, alpha)
integer i, n
real(8) alpha, x(*), y(*)
call ALIGNX(16,x(1))
call ALIGNX(16,y51))
do i=1,n

y(i) = y(i) + alpha*x(i)
enddo
 Chapter 6. Porting applications 147

return
end

For the C language, you can tell the compiler to map data to 16-byte aligned
memory with the statement __attribute__((__aligned__(16))). Example 6-11
shows how to tell the compiler to align the variables x and y along 16-byte
boundaries.

Example 6-11 The use __attribute__((__aligned__(16)) in C program

void align_manually(double n)
{
double x[255]__attribute__((__aligned__(16)));
double y[255]__attribute__((__aligned__(16)));
int i;
for (i=0; i<256; i++) x[i} = y[i] ... ;
...
}

Standard data alignment for the compiler
All dynamically allocated memory (malloc in C, allocate in FORTRAN) is
16-byte aligned. The global objects are also 16-byte aligned. The 16-byte
alignment of structure components and variables in COMMON blocks are under
the control of the programmer.

Remove potential memory conflicts in C/C++ (aliasing)
In C/C++, the compiler cannot assume that the memory accessed by pointers will
not be altered by other pointers that could refer to the same address. The
compiler will generate quadword instructions, but no SIMD instructions.

In Example 6-12 there is a potential load-store conflict with the x and y pointers.
To generate quadword instructions, it is mandatory to tell the compiler that x and
y arrays are disjoint in memory using the #pragma disjoint directive. This
directive informs the compiler that two pointers do not share the same storage
(memory overlap).

Instead of inserting a disjoint directive, you can also use the -qalias=allp
compiler option.

Example 6-12 The use of #pragma disjoint directive

void daxpy(int n, double *x, double *y, double alpha)
{
int i;
#pragma disjoint(*x, *y)
__alignx(16,x);
148 Unfolding the IBM ̂Blue Gene Solution

__alignx(16,y);
for (i=0; i>n; i++) y[i] = y[i] + alpha*x[i];
}

Creating specific versions for relative alignment (versioning)
In some cases, the alignment is only known at runtime. For performance-critical
routines, you may want to define different versions with and without alignment
assertions, pragma directives and code changes. This technique is called
versioning. In the original routine, you have to test the alignment of the data and
call the appropriate version.

In Example 6-13, the daxpy function has been split into three functions. The main
function, with the original name, calls the appropriate implementation depending
on the alignment of data on 16-byte boundaries. The statement __inline before
the routine tells the compiler to inline the routines in order to avoid call overhead.

Example 6-13 Checking the alignment and calling the appropriate versions

void daxpy(int n, double *x, double *y, double alpha)
{
if (((((int) x) | ((int) f)) & 0xf) == 0)

/* or if (((int) x % 16 == 0) && ((int) f % 16) == 0) */
daxpy_align(n, x, y);

else
daxpy_no_align(n, x, y);

}

/* 16-byte alignment daxpy version */
__inline void daxpy_align(int n, double *x, double *y, double alpha)
{
int i;
#pragma disjoint(*x, *y)
__alignx(16,x);
__alignx(16,y);
for (i=0; i>n; i++) y[i] = y[i] + alpha*x[i];
}
/* original routine without alignment assertions*/
__inline void daxpy_no_align(int n, double *x, double *y, double alpha)
{
int i;
#
for (i=0; i>n; i++) y[i] = y[i] + alpha*x[i];
}

 Chapter 6. Porting applications 149

6.2.4 Exploiting the double FPU
The main features used to exploit the double FPU are described in the previous
sections. In this section we summarize the steps needed to exploit the double
FPU, provide some added details (such as diagnostic or unrolling of the loops),
and give some examples.

Generating SIMD instructions to exploit the double FPU
1. Compile for the 440d architecture: -qarch=440d -qtune.

2. Enable SIMD instructions: either -03, -qhot, -O4, or -O5.

3. Get diagnostic information and analyze object file listings:

– -qdebug=diagnostic (only available with -qhot)

– -qsource -qlist

4. Supply information to the compiler:

– Alignment information with directives and pragmas: __alignx in C, ALIGNX
in FORTRAN.

– Tell the compiler that data accessed through pointers is disjoint: #pragma
disjoint in C.

– Use constant loop bound: #define, when possible.

– Use data flow instead of control flow.

– Use select instead of if/then/else; use macros instead of calls.

– Tell the compiler not to generate SIMD instructions if it is not profitable (trip
count low):

#pragma nosimd in C and !IBM* NOSIMD in FORTRAN (just before the loop)

– Tell the compiler that all references are naturally aligned:

-qdebug=simd_nonat_aligned

What impacts the double FPU
The following items affect double FPU performance:

� Only the innermost loop can be optimized for double FPU:

– Sometimes manual loop interchange is needed.

– The compiler can interchange loops; this feature can be disabled with:
-qdebug=nunimod

� The while loop only exploits the primary floating point pipe.

� Loops must be stride one accesses (stride random indirect accesses are not
supported).
150 Unfolding the IBM ̂Blue Gene Solution

� Function calls in loop:

– Try to inline the calls.

� Loop with if statement.

� Pointer and aliasing use.

� Integer operations.

� Assumed shape arrays in FORTRAN 90 (see Example 6-14).

Example 6-14 Assumed-shape arrays in FORTRAN 90 bans SIMD instructions

! Assumed-shape arrays hurt SIMD instruction generation
subroutine simd_off(n, x, y)
integer n
real(8) alpha, x(:), y(:)
...
end

! Replace fortran90 Assumed-shape arrays statements by fortran77 statements
subroutine simd_on(n, x, y)
integer n
real(8) alpha, x(*), y(*)
...
end

Using the diagnostic report and object file listing
The -qdebug=diagnostic compiler option generates a diagnostic report about
SIMD instruction generation. The diagnostic report is only available with the
high-order transformation module (-qhot). This module can alter the semantic of
the code and cannot be set as a default compiler option for many real
applications.

We advise enabling diagnostic report for performance-critical routines in order to
highlight the SIMD instruction failures. To analyze the generated code and the
use of quadword loads and stores, you have to look at the pseudo assembler
code within the object file listing.

The diagnostic report provides two types of information on SIMD generation
(information on success and information on failure), but it does not contain
information about quadword loads and stores instructions. The information on
failure allows you to take appropriate actions.

The main information items provided by the diagnostic report are:

1. Information on success:

– (simdizable) [feature][version]
 Chapter 6. Porting applications 151

– [feature] further characterizes the simdizable loop:

• misalign (compile time store): This refers to a simdizable loop with
misaligned accesses.

• shift(4 compile time): This refers to a simdizable loop with 4 stream
shift inserted. shift means how many misaligned data references
were found. This has a performance impact since these loops need to
be loaded cross, and then an extra select instruction must be inserted.

• priv: Indicates that the compiler has generated a private variable. priv
means a private var was found. In general, it should have no
performance impact, but in practice it sometimes does.

• reduct: This means that simdizable loop has a reduction construct.
reduct means that a reduction was found. It will be simdized using
partial sums, which need to be added up at the end of the loop.

– [version] further characterizes if and why versioned loops were created:

• relative align: Indicates the version for relative alignment. The
compiler has generated a test and two versions.

• trip count: Versioned for short runtime trip count.

2. Information on failure allows you to take appropriate actions. The following list
contains an explanation of the messages that you might observe:

– In case of misalignment: misalign(...)

• non-natural: Non-naturally aligned accesses

• runtime: runtime alignment

– About the structure of the loop

• irregular loop structure (while-loop)

• contains control flow: if/then/else

• contains function call: function call bans SIMD instructions

• trip count too small

– About dependences: dependence due to aliasing

– About array references

• access not stride one

• mem accesses with unsupported alignment

• contains runtime shift

– About pointer references: non normalized pointer accesses
152 Unfolding the IBM ̂Blue Gene Solution

When misalignment needs manual changes
In many cases, the compiler is able to rearrange loops and generate SIMD
operations. Without the -qhot compiler option or for complex loops, most of the
time when there is a misalign issue, the compiler is not able to generate
quadword loads and stores, thus it generates separate instructions to load
primary and secondary registers. The Blue Gene/L processor core has only one
load-store unit, and loading the primary and secondary registers separately
impacts performance.

We give two simple examples where it is necessary to manually modify the code:

� for (i=0;i<n;i++) y[i+1] = x[i+1] + c[i+1] (Example 6-15 on page 153)

� for (i=0;i<n;i++) y[i+1] = x[i+1] + c[i] (Example 6-17 on page 155)

In these examples, we assume that the arrays are always 16-byte aligned. They
have been compiled with -03 -qarch=440d -qtune=440.

In Figure 6-15, the arrays x, y and c are misaligned for the first iteration and
relatively aligned for the other iterations. The pseudo-assembler points out the
SIMD instructions for the addition (fpadd) and that the compiler has generated
separate loads (lfd and lfsdx instructions) and stores (stfd and stfsdx
instructions) for the primary and secondary registers.

To generate quadword instructions (lfpdx and stfpdx instructions) you just
have to peel the first iteration out, as described in Example 6-16 on page 154.

Example 6-15 Misalignment for the first iteration (no quadword instructions)

1 | void add3(int n, double alpha, double *x, double *y, double *c)
2 | {
3 | int i;
4 | #pragma disjoint(*x,*y, *c)
5 | __alignx(16,x); __alignx(16,y); __alignx(16,c);
6 |
7 | for (i=0;i<n;i++) y[i+1] = x[i+1] + c[i+1];
8 | }

*** overview of the pseudo-assembler (to simply some lines have been removed)
7| CL.47:
7| 00008C lfd C8240008 1 LFL fp1=x[]0(gr4,8)
7| 000090 lfsdx 7C24399C 1 LFL fp33=x[]0(gr4,gr7,0,trap=16)
7| 000094 stfd D8450028 1 STFL y[]0(gr5,40)=fp2
7| 000098 fpadd 00602018 1 FPADD fp3,fp35=fp0,fp32,fp4,fp36,fcr
7| 00009C stfsdx 7C45459C 1 STFL y[]0(gr5,gr8,0,trap=48)=fp34
7| 0000A0 lfd C8460008 1 LFL fp2=c[]0(gr6,8)
7| 0000A4 lfsdx 7C46399C 1 LFL fp34=c[]0(gr6,gr7,0,trap=16)
7| 0000A8 lfd C8040018 1 LFL fp0=x[]0(gr4,24)
7| 0000AC lfsdx 7C04199C 1 LFL fp32=x[]0(gr4,gr3,0,trap=32)
 Chapter 6. Porting applications 153

7| 0000B0 stfd D8650038 1 STFL y[]0(gr5,56)=fp3
7| 0000B4 fpadd 00411018 1 FPADD fp2,fp34=fp1,fp33,fp2,fp34,fcr
7| 0000B8 stfsdux 7C654DDC 1 STFDU gr5,y[]0(gr5,gr9,0,trap=64)=fp35
7| 0000BC lfd
....
7| 0000EC fpadd 00411018 1 FPADD fp2,fp34=fp1,fp33,fp2,fp34,fcr
7| 0000F0 stfsdx 7C651D9C 1 STFL y[]0(gr5,gr3,0,trap=32)=fp35
7| 0000F4 lfd C8860038 1 LFL fp4=c[]0(gr6,56)
7| 0000F8 lfsdux 7C8649DC 1 LFDU fp36,gr6=c[]0(gr6,gr9,0,trap=64)
0| 0000FC bc 4320FF90 0 BCT ctr=CL.47,taken=100%(100,0)

Example 6-16 Peeling first iteration allows quadword instructions generation

void add3(int n, double alpha, double *x, double *y, double *c)
2 | {
3 | int i;
4 | #pragma disjoint(*x,*y, *c)
5 | __alignx(16,x); __alignx(16,y); __alignx(16,c);
6 |
7 | y[1] = x[1] + c[1];
7 | for (i=1;i<n;i++) y[i+1] = x[i+1] + c[i+1];
8 | }

8| CL.47:
8| 00008C fpadd 00A20018 1 FPADD fp5,fp37=fp2,fp34,fp0,fp32,fcr
8| 000090 lfpdx 7C432B9C 1 LFPL fp2,fp34=x[]0(gr3,gr5,0,trap=8)
8| 000094 lfpdx 7C062B9C 1 LFPL fp0,fp32=c[]0(gr6,gr5,0,trap=8)
8| 000098 stfpdx 7C843F9C 1 SFPL y[]0(gr4,gr7,0,trap=24)=fp4,fp36
8| 00009C addi 38840040 1 AI gr4=gr4,64
8| 0000A0 fpadd 00830818 1 FPADD fp4,fp36=fp3,fp35,fp1,fp33,fcr
8| 0000A4 lfpdx 7C633B9C 1 LFPL fp3,fp35=x[]0(gr3,gr7,0,trap=24)
8| 0000A8 lfpdx 7C263B9C 1 LFPL fp1,fp33=c[]0(gr6,gr7,0,trap=24)
8| 0000AC stfpdx 7CA4579C 1 SFPL y[]0(gr4,gr10,0,trap=-24)=fp5,fp37
8| 0000B0 addi 38630040 1 AI gr3=gr3,64
8| 0000B4 fpadd 00A20018 1 FPADD fp5,fp37=fp2,fp34,fp0,fp32,fcr
8| 0000B8 lfpdx 7C43539C 1 LFPL fp2,fp34=x[]0(gr3,gr10,0,trap=-24)
8| 0000BC lfpdx 7C06439C 1 LFPL fp0,fp32=c[]0(gr6,gr8,0,trap=40)
8| 0000C0 stfpdx 7C845F9C 1 SFPL y[]0(gr4,gr11,0,trap=-8)=fp4,fp36
8| 0000C4 fpadd 00830818 1 FPADD fp4,fp36=fp3,fp35,fp1,fp33,fcr
8| 0000C8 lfpdx 7C635B9C 1 LFPL fp3,fp35=x[]0(gr3,gr11,0,trap=-8)
8| 0000CC lfpdx 7C264B9C 1 LFPL fp1,fp33=c[]0(gr6,gr9,0,trap=56)
8| 0000D0 addi 38C60040 1 AI gr6=gr6,64
8| 0000D4 stfpdx 7CA42F9C 1 SFPL y[]0(gr4,gr5,0,trap=8)=fp5,fp37
0| 0000D8 bc 4320FFB4 0 BCT ctr=CL.47,taken=100%(100,0)

For a simple loop like the one in Example 6-15 the compiler will be able to
transform the loop and peel the first iteration out, using the -qhot option.
154 Unfolding the IBM ̂Blue Gene Solution

In Example 6-17, in the loop for (i=0;i<n;i++) y[i+1] = x[i+1] + c[i], the arrays
x and y are misaligned for the first iteration and relatively aligned for the other
iterations, while c is always misaligned. The compiler cannot generate quadword
load for array c.

The solution here is to peel the first iteration out and realign c. The realignment of
array c has to be done during the array creation. One solution is given in
Example 6-18. The solution here is to increase the size of c and move the
beginning of the array in order to align element one, instead of element 0, to a
16-byte boundary.

Example 6-17 The first iteration and the c array misaligned

--- Main program in C
main()
{
double *x, *y, *c;
int *n;
*n = 128;
x = (double*) malloc(sizeof(double)*(*n+2));
y = (double*) malloc(sizeof(double)*(*n+2));
c = (double*) malloc(sizeof(double)*(*n+2));
initial_array(n, x, y, c);
add33(n, x, y, c);
}
---- Main program in Fortran
program
integer n
parameter (n=128)
real(8) x(n+2), y(n+2), c(n+2)
call initial_array(n, x, y, c)
call add33(n, x, y, c)
end

--- Function add3 in C
void add33(int *n, double *alpha, double *x, double *y)
{
int i;
#pragma disjoint(*x,*y, *c);
__alignx(16,x); __alignx(16,y); __alignx(16,c);
for (i=0;i<n;i++) y[i+1] = x[i+1] + c[i];
}

Example 6-18 Helping compiler to generate quadword loads for array c (manually)

--- Main program in C
main()
{
double *x, *y, *c;
 Chapter 6. Porting applications 155

int *n;
*n = 128;
x = (double*) malloc(sizeof(double)*(*n+2));
y = (double*) malloc(sizeof(double)*(*n+2));
c = (double*) malloc(sizeof(double)*(*n+4));
c++;
initial_array(n, x, y, c);
add33(n, x, y, c);
}
---- Main program in Fortran
program
integer n
parameter (n=128)
real(8) x(n+2), y(n+2), c(0:n+3)
call initial_array(n, x, y, c(1))
call add33(n, x, y, c(1))
end

--- Function add3 in C
void add33(int *n, double *alpha, double *x, double *y)
{
int i;
#pragma disjoint(*x,*y, *c);
__alignx(16,x); __alignx(16,y); __alignx(16,c+1);
y[1] = x[1] + c[0];
for (i=1;i<n;i++) y[i+1] = x[i+1] + c[i];
}

Unrolling loops
The compiler is designed to perform unrolling of loops to an adequate depth.
Nevertheless, in some cases increasing the unrolling depth can generate more
efficient code.

The major benefits of unrolling are:

� Data dependency delays can be reduced or eliminated.

� Loads and stores may be eliminated in successive loop iterations.

� Load overhead may be reduced.

� Larger basic blocks resulting from unrolled loops create more instruction
scheduling opportunities (and challenges) for the optimizer.

Loop unrolling can be done by hand or by adding #pragma unroll(X) in C and
!IBM* UNROLL(X) directives in FORTRAN before the loop, where X specifies the
unrolling depth.
156 Unfolding the IBM ̂Blue Gene Solution

Use XL built-in floating point functions for Blue Gene/L
The XL C/C++ and FORTRAN compilers include a large set of built-in functions
that are optimized for the PowerPC architecture.

In addition, on Blue Gene/L, the XL compilers provide a set of built-in functions
that are specifically optimized for the double FPU. These built-in functions
provide an almost one-to-one correspondence with the SIMD instruction set.

All of the C/C++ and FORTRAN built-in functions operate on complex data types,
which have an underlying representation of a two-element array, in which the
real part represents the primary element and the imaginary part represents the
second element. The input data you provide does not actually need to represent
complex numbers: in fact, both elements are represented internally as two real
values, and none of the built-in functions actually performs complex arithmetic. A
set of built-in functions specially designed to efficiently manipulate complex-type
variables is also available.

For a full description of these functions refer to the Blue Gene/L: Application
Development, SG24-6745.

We provide an example of the use of built-in functions in C and FORTRAN here
(Example 6-19 and Example 6-20). The example creates a custom parallel add
function that uses the parallel load and adds built-in functions to add two double
floating-point values in parallel and return the result as a complex number.

Example 6-19 Use of built-in functions - C/C++

double _Complex padd(double *x, double *y)
{
double _Complex a,b,c;
/* note possibility of alignment trap if (((unsigned int) x) % 32) >= 17) */

a = __lfpd(x); //load x[0] to the primary part of a, x[1] to the secondary part of a
b = __lfpd(y); //load y[0] to primary part of b, y[1] to the secondary part of b
c = __fpadd(a,b); // the primary part of c = x[0] + y[0]

 /* the secondary part of c = x[1] + y[1] */
return c;
/* alternately: */
return __fpadd(__lfpd(x), __lfpd(y)); /* same code generated with optimization

Note: For quadword loads/stores and double FPU instructions, the unrolling
depth should be a multiple of two; otherwise, the compiler will unroll on the
inferior value. On POWER4 or POWER5, the compile can unroll the loops
based on an odd depth according to the programmer’s instruction. On Blue
Gene/L, in order to generate SIMD instructions, the compiler forces this to be
an even number irrespective of the programmer’s instruction.
 Chapter 6. Porting applications 157

enabled */
}

Example 6-20 Use of built-in functions - FORTRAN

FUNCTION PADD (X, Y)
COMPLEX(8) PADD
REAL(8) X, Y
COMPLEX(8) A, B, C

A = LFPS(X)
B = LFPS(Y)
PADD = FPADD(A,B)

RETURN

Daxpy example

Figure 6-1 shows the measurements for a simple daxpy loop, Example 6-15 on
page 153, with and without alignx directives and different compiler options.
Notice that the performance obtained with -qarch=440d with no alignment
assertions is below that obtained with -qarch=440. This is due to the separate
load-primary-register and load-secondary-register instructions generated by the
compiler when the alignment is not known. The L1 cache edge at 32 KB and the
L3 cache edge at 4 MB are evident in the figure. It is possible to generate more
efficient code by adding appropriate unroll directives, or hand-unrolling the loop,
or writing assembler, or with double FPU functions.

Figure 6-1 Blue Gene/L daxpy performance
158 Unfolding the IBM ̂Blue Gene Solution

6.2.5 Divide, square root operations, and vector intrinsic functions
The compiler is capable of generating calls to optimized vector versions of
intrinsic functions. These functions are included in the libxlopt.a library within XL
FORTRAN and vac C/C++ compilers. These calls are generated by the
high-order transformation module (-qhot). Some options, like -qhot=novector or
-qstrict, prevent the compiler from calling vector functions.

In many applications, the intrinsic functions can account for an important part of
the CPU usage, and calling the vector versions may significantly improve
performance. On Blue Gene/L, the number of vector functions available will
increase with the releases of the compiler. Therefore, we advise recompiling the
program after each major release of the compiler. Unlike the AIX XLF or vac
compilers, the number of vector functions available on Blue Gene/L is limited.
Only the functions vrec for inverse division, vsqrt for the square root and vrsqst
for the inverse square root are implemented in the libxlopt.a library.

Divide and square root
On Blue Gene/L, the hardware has a reciprocal estimate for the square root
(fprsqte instruction) and division (fpre instruction). The precision of these
estimates is much more accurate than on other PPC machines, and it allows a
Newton iteration scheme to refine the estimate faster than it would the division
operation.

In favorable cases, using -O3 -qarch=440d, the compiler will generate a special
Newton code based on Blue Gene/L hardware reciprocal estimates for division,
square root, and reverse. This results in pipe-lined SIMD instructions that have
high performance and may give a huge performance boost for some real
applications. A quick glance at the pseudo assembler code allows easy detection
of fprsqte or fpre instructions.

The vector vrec, vqsrt and vrsqrt routines, from the libxlopt.a library, also use
parallel estimate instructions and Newton's method. For small vectors the call
overhead may slow down operations. Today, these routines, calls from -qhot, do
not have the same efficiency as the routines from the vector MASS library. In
future releases of the compiler, these routines will be the same in both libxlopt.a

Note: You can observe in the daxpy example that the gain from the SIMD
instructions is lost when the data only fits in the RAM memory. The memory
subsystem does not allow taking advantage of SIMD instructions. Therefore,
for applications which do not reuse the data in the cache, we recommend that
you not spend a lot of time on SIMD generation.
 Chapter 6. Porting applications 159

and libmassv.a. Currently, we recommend linking with the vector MASS library.
For more details see “MASS and MASSV libraries” on page 168.

Under -O3 level or with -qarch=440 the compiler will call the standard fdiv
instruction and will not take advantage of the Blue Gene/L hardware. For
square-root the compiler will call the sqrt or rsqrt functions from the libm.a
library. The standard fdiv takes 29 cycles, compared to 14.1 cycle for vdiv and
3.5 cycles for vrec.

6.2.6 Memory management
As already pointed out, it is important to think about the memory management on
a Blue Gene/L system. Even though no application can overtake the physical
memory, many performance issues can be identified based on a good
knowledge of the memory subsystem. The memory subsystem of Blue Gene/L
nodes has specific characteristics and limitations that the programmer should
know about.

Memory management is not the same on the I/O node and the compute nodes.
On both nodes the virtual address space exactly matches the real address
space. TLB misses are handled by the kernel software. On the I/O node the
memory pages are 4 KB in size and the processor core can address 256 KB
without TLB miss. On the compute node the size of the memory page is 256 MB;
therefore, there are no TLB misses on the compute nodes.

In the following section we explain in detail all the components of the Blue
Gene/L node memory subsystem. It is useful for a programmer who wants to port
and tune applications on Blue Gene/L to understand the behavior of each
component of the memory subsystem. We point out the main traps which must
be avoided in this section.

Memory addressing
From the point of view of the Compute Node Kernel, application data is
categorized as one the following types:

data Initialized static and common variables

bss Uninitialized static and common variables

heap Controlled allocatable arrays

stack Controlled automatic arrays and variables

Figure 6-2 describes the memory addressing for an executable. The text section
starts at address 0. The heap section begins from the bottom, after the data and
bss sections, and the stack section starts from the top, at address 1feaa93c
(around 510.6 MB) in coprocessor mode and at the address feea93c (around
160 Unfolding the IBM ̂Blue Gene Solution

254 MB) in virtual node mode. (Refer to Example 6-22 on page 163for more
details.)

Figure 6-2 Blue Gene/L memory addressing

The -g compiler option can generate a very large executable. This increase in
the size of the executable is due to debug information. Nevertheless, the debug
data, in particular the table of symbols, is not loaded on the compute node and
does not impact the memory size. The command size or size --format=sysV on
the front-end node lists the real size of the executable loaded on the compute
node. You may still want to strip it for a faster load onto the nodes.

Example 6-21 gives a single C code allowing you to display the memory
addressing. The Linux function sbrk(0) available on the CNK displays the end
of the heap address.

Example 6-21 Program mem_addr

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h> // for 'brk ()' and 'sbrk ()'

extern int _etext; // end of code area
extern int _edata; // end of data area
extern int __bss_start; // start of bss area

Note: On the CNK there is no process to limit the size of stack and heap.
Therefore, they can overlap each other. It may be useful in an application to
check the addresses for the ends of both heap and stack segments.

data
text

bss

heap

stack

virtual modeCo-processor mode
1feaa93c feea93c

0 0
 Chapter 6. Porting applications 161

extern int _end; // end of bss area

unsigned long heapsize ()
 {
 return (unsigned long) sbrk (0) - (unsigned long) & _end;
 }

void * gotostack ()
 {
 long st[SZ*SIZE];
 st[0]=123456;
 printf ("\nstart of stack address %9lx\n", &st[SZ*SIZE-1]);
 printf ("end of stack address %9lx\n\n", st);
 }

#define SIZE 1024*256 // 1 MB of long
// #define SZ 248 // virtual mode
#define SZ 500 // co-processor mode

int initialized = 123; // goes to data area
int uninitialized; // goes to bss
int main (int argc, char * argv [])
{
int loop;
long long_integer;
long * heap_array;
long * heap_array0;

errno=0;

if ((heap_array0 = (long *) malloc (SZ*SIZE*sizeof(long_integer))) == NULL)
printf("error, could not allocate\n");
if(errno !=0){
printf ("malloc errno : %d\n",errno); errno=0; }

if ((heap_array = (long *) malloc (SIZE*sizeof(long_integer))) == NULL)
printf("error, could not allocate\n");
if(errno !=0){
printf ("malloc errno : %d\n",errno); errno=0;}

printf ("Memory mapping\n\n");
printf ("heapsize function address %9lx\n", heapsize);
printf ("printf function address %9lx\n", printf);
printf ("end of code address %9lx\n", &_etext);
printf ("variable initialized address %9lx\n", &initialized);
printf ("end of data address %9lx\n", &_edata);
printf ("start of bss address %9lx\n", &__bss_start);
printf ("variable uninitialized address %9lx\n", &uninitialized);
printf ("end of bss address %9lx\n", &_end);
printf ("start of heap address %9lx\n", heap_array0);
162 Unfolding the IBM ̂Blue Gene Solution

printf ("end of heap_array0 address %9lx\n", &heap_array0[SZ*SIZE-1]);
printf ("start of heap_array address %9lx\n", heap_array);
printf ("end of heap_array address %9lx\n", &heap_array[SIZE-1]);
printf ("end of heap address %9lx\n", sbrk(0));
long_integer=heapsize();
printf ("\nHeap size %lu %9lx\n\n",long_integer,long_integer);
gotostack()
}

The execution of the program in Example 6-21 is shown in Example 6-22.

Example 6-22 Execution of mem_addr described in Example 6-21

$ mem_addr
coprocessor mode virtual node mode

Memory mapping

heapsize function address 100868 100868
printf function address 10f3e8 10f3e8
end of code address 13eee8 13eee8
variable initialized address 160778 160778
end of data address 1627a8 1627a4
start of bss address 1627a8 1627a4
variable uninitialized address 1627bc 1627b8
end of bss address 1633ec 1633e8
start of heap address 1634b0 1634b0
end of heap_array0 address 1f5634ac f9634ac
start of heap_array address 1f5634c0 f9634c0
end of heap_array address 1f6634bc fa634bc
end of heap address 1f67b000 fa7b000

Heap size 525433876 1f517c14 261192728 f917c18
start of stack address 1feaa93c feea93c
end of stack address aaa940 6ea940

Floating point registers
There are two sets of 32 floating point registers (each 64-bit), one per arithmetic
pipe. Primary and secondary registers are not independent and share address
buses for each port. There is only one load and store unit per core and each core
can handle only one store or one load per cycle. The instruction set provides an
instruction to load a 16 byte quadword per cycle. It takes three cycles to fill out a
register or a double register from the L1 cache. Knowing there are 32 double

Note: You can see that the stack and the heap overlap each other. You do not
want this to happen in a real application.
 Chapter 6. Porting applications 163

floating point registers, the processor can compute four operations per cycle if
the data fits in the L1 cache.

L1 cache
On Blue Gene/L the PPC440 internal L1 caches does not have automatic
prefetching. Explicit cache touch instructions are supported. Although the L1
instruction cache was designed with support for prefetches, it was disabled for
efficiency reasons.

Figure 2-8 on page 31 shows the L1 caches in the PPC440 architecture. The
size of the L1 cache line is 32 bytes. L1 cache has two buses towards the L2
cache, one for the stores and one for the loads, 128 bits in width, and running at
half the processor frequency. The theoretical bandwidth is 8 bytes per cycle. This
value is achieved for the stores but not for the loads. L1 cache has only a three
line fetch buffer. Therefore, there are only three outstanding L1 cache line
requests. The fourth one waits for the first one to complete before it can be sent.

The number of cycles to access a line in the L2 cache is 11.5 for integers and
12.5 for floating points. Nevertheless, the complete turn-around for an L1-miss,
allocating a line fill buffer, sending out a request to L2, receiving the data,
forwarding the data to a register, committing the data to L1, and freeing up the
line fill buffer for reuse is 18 processor cycles.

Since there are only three outstanding L1 cache line load requests at the same
time, at most three cache lines can be got every 18 cycles. The maximum
memory bandwidth is three times 32 bytes divided by 18 cycles, which yields 5.3
bytes per cycle.

To take advantage of the SIMD instructions it is essential to keep the data in the
L1 cache as much as possible. Without an intensive reuse of data from the L1
cache and the registers, the number of registers does not allow the memory

Note: There is no rename register process on PPC440.

Important: Avoid instructions prefetching data in L1 cache on Blue Gene/L.
The Blue Gene/L processor allows filling in concurrently three L1 cache lines;
it is therefore mandatory to reduce the number of prefetching streams below
three.

To optimize the FPUs and feed the floating point registers, a programmer can
use the XL compiler directives or assembler instructions (dcbt) to prefetch
data in the L1 data cache. The applications specially tuned for POWER4 or
POWER5 processors taking advantage of four or eight prefetching engines
will choke the memory subsystem of the Blue Gene/L processor.
164 Unfolding the IBM ̂Blue Gene Solution

subsystem to feed the double FPU and provide two multiply-addition operations
per cycle.

In the worst case, SIMD instructions can hurt the global performance of the
application. For that reason we advise disabling the SIMD instructions in the
porting phase by compiling with -qarch=440, then recompiling the code with
-qarch=440d and analyzing the performance impact of SIMD instructions. The
analysis should be done with a data set and a number of processorsthat is
realistic in terms of memory usage.

L2 cache
Blue Gene/L L2 cache, shown in Figure 2-7 on page 29, is the hardware layer
providing the link between the embedded cores and Blue Gene/L devices such
as the 4 MB L3-eDRAM and the 16 kB SRAM. The 2 KB L2 cache line is 128
Bytes in size. Each L2 cache is connected to one processor core. They are fully
associative and are coherent. Basically, they act as prefetch and write-back
buffers for the L1 data cache.

The L2 design and architecture was created to provide optimal support for the
PC440 cores for scientific applications. Thus, a logic for automatic sequential
stream detection and prefetching to the L2 has been added. The logic is
optimized to perform best on sequential streams with increasing addresses. The
L2 boosts the overall performance for almost any application and does not
require any special software provisions. It autonomously detects streams, issues
the prefetch requests, and keeps the prefetched data coherent.

Careful programming will help to achieve latency/bandwidth results very close to
the theoretical limits (5.3 bytes per cycle) dictated by the PPC440 core. The L2
accelerates memory accesses for one up to seven sequential streams. More
parallel streams could be supported in theory, but require careful data layout and
instruction scheduling for only marginal acceleration. (Although more than seven
streams are supported by the hardware, this mode of operation is not
recommended.)

L3 cache
The 4 MB L3 cache is described in 2.2.3, “Memory system overview” on page 31.
The line size is 128 bytes. Both banks are directly accessed by the two processor

Important:

� The otpimization of the applications has to be based on the 32 KB of the L1
cache.

� The benefits of the SIMD instructions might be cancelled out if data does
not fit in L1 cache.
 Chapter 6. Porting applications 165

cores and the gigabit network, only on the I/O node. There are three write
queues and three read queues. The read queues directly access both banks.

There are three write queues, each four 32-byte entries deep. Each write queue
can deposit up to one request per cycle into the four entry deep write buffer. The
write buffer can accept one request from every write queue in every cycle (for a
total of up to three per cycle) to any location in the four lines. All three 32-byte
requests can, for example, be to a single line in the write buffer or to three
different lines in the write buffer. This performance is possible provided valid
lines are established in the write buffer and the incoming requests match the
address of the write lines. If a request arrives at the write buffer and is not
matching an address of the established lines, a new line has to be allocated. A
new line can be allocated if there is a free line in the buffer available. The buffer
can allocate a new line every two cycles.

The transition of a valid line becoming free takes between four and six cycles on
cache hit, and more for a miss. The transition is triggered by either a read after
write conflict, the line containing 128 Bytes of valid data, or a write buffer fill level
threshold being crossed. Several lines can make the transition in parallel.

On the compute node, in sequential access, four 32-byte write requests (one
line) from each processor core can be completed in six cycles. In random access
each write request addresses a new line, and four write requests take between
15 and 18 cycles in virtual node mode and around 14 cycles in coprocessor
mode.

DDR (Double Data RAM) memory architecture
The theoretical memory bandwidth on a Blue Gene/L node to transfer a 128-byte
line from the external DDR memory to the L3 cache is 16 cycles. Nevertheless,
this bandwidth can only be sustained with sequential access. Random access
can reduce bandwidth significantly.

Important: Random access can divide the write sustained bandwidth of the
L3 cache by a factor of three on compute nodes and more on I/O nodes.
166 Unfolding the IBM ̂Blue Gene Solution

Table 6-1 Latency and sustained bandwidth estimates

On Blue Gene/L the external DDR memory has four module internal banks with
128-bit line size. The lines are allocated across the four banks in a round robin
fashion. Each bank deals with one line request every 60 cycles. Therefore, two
consecutive accesses to the same bank will result in at least 44 cycle overhead.

Although the memory is sequentially accessed, the alignment of the arrays to
different memory banks may improve the memory bandwidth. A method to
optimize the location of the arrays on the memory banks is to increase the size
by a 128-byte line.

In Example 6-23 the size if the arrays is a multiple of 64 (four memory lines for 16
double-bit reals). Each iteration of the inner loop requests to access three
different lines located in the same memory bank. An easy way to improve the
performance is to add an offset value to move back the arrays by one line. This
simple change, shown in Example 6-24, yields a 20% performance improvement
on Blue Gene/L.

Example 6-23 Concurrent accesses to the same memory bank

program nooffset
implicite none

Latency Sustained bandwidth (bytes/cycle)

Random access Sequential access

L1 3 16 16

L2 11.5 2.7 5.3

L3 (eDRAM page hit) 23 1.5 5.3

L3 (eDRAM page miss) 31 1.2 (NA)

External DDR (single
processor)

75 0.57 5.3

External DDR (dual
processor)

75 0.57 4.0

Important: Blue Gene/L DDR memory has four internal banks with 128-bit
lines. Concurrent accesses to the same memory bank generate a significant
overhead.

� For a random access the memory sustained bandwidth is much less.

� For sequential access, two arrays used in a single operation must not be
aligned on the same bank.
 Chapter 6. Porting applications 167

integer n
parameter (n=12800000)
real(8) x(n), y(n), w(n)
integer i,j
integer(8) time0, time1, rts_get_timebase

call rand_seed
call rand_number(x)
call rand_number(y)
call rand_number(w)
do j=1,1000

call dummy()
time0 = rts_get_timebase()
do j=1,n

x(1) = x(1) + y(1)*w(1)
enddo
time1 = rts_get_timebase()

enddo
write(6,*) ‘total time in seconds : ‘, (time1-tim0)/(700.D6)
end

Example 6-24 Offset the arrays the memory banks vs. Example 6-23

program offset
implicite none
integer n, offset
parameter (n=12800000, offset=16)
real(8) x(n+offset), y(n+2*offset), w(n)
....
same as Example 6-23 on page 167

6.2.7 Math libraries
This section provides information about the math libraries currently available on
Blue Gene/L. The number of math libraries will increase with the marketing of
Blue Gene/L. We recommend using the math libraries as much as possible.

MASS and MASSV libraries
The mathematical acceleration subsystem (MASS) library provides high
performance versions of a subset of FORTRAN intrinsic functions. Compared to
the standard mathematical library, the results may not be bit-to-bit identical.
Nevertheless, MASS results are generally sufficiently accurate for most
applications; only people using special IEEE rounding options may chose not to
use it.
168 Unfolding the IBM ̂Blue Gene Solution

The MASS library can be downloaded from:

http://www-306.ibm.com/software/awdtools/mass/

There are two basic types of function available for each operation, a single
instance function (libmass.a) and a vector function (libmassv.a). The single
instance function simply replaces the libm.a call with a MASS library call. The
vector function is used to produce a vector of results given a vector operand. The
vector MASS functions may require coding changes while the single instance
functions do not.

To enable the MASS functions the application must be linked with the libmass.a
library for the single instance functions and with the ibmassv.a library for vector
functions. Ask your system administrator for the location of mass libraries. To
avoid errors during the link due to multiple definitions, add to the option:

-Wl,--allow-multiple-definition

The vector functions are the same name and arguments as the vector intrinsic
functions within the libxlopt.a library within XL compiler, described in 6.2.5,
“Divide, square root operations, and vector intrinsic functions” on page 159.

An example using the MASS library with FORTRAN code follows. This code
would be rather expensive using the standard cos and sin functions and may be
replaced using the vector MASS reciprocal approximation function vsincos (See
Example 6-25).

Example 6-25 How to use a vector mass function

! Original code
real(8) x(*), y(*), z’*)
...
do i=1,n
x(i) = sin(z(i))
y(i) = sin(z(i))

enddo
! With MASSV library the loop can be replaced by the function vsincos
! call vsincos(x, y, z, n)

All the functions are written in C and compiled for Blue Gene/L double FPU. The
performance gain compared to standard functions is very high and will be
improved in the future. Table 6-2 presents some performance (in clock cycles) on
Blue Gene/L.
 Chapter 6. Porting applications 169

Table 6-2 Math instrinsic performance on Blue Gene/L in clock cycles

IBM ESSL library
The Engineering and Scientific Subroutine Library (ESSL) family of products is a
state-of-the-art collection of mathematical subroutines. Using ESSL subroutines
on Blue Gene/L can significantly improve single processor performance.

ESSL provides a variety of mathematical functions, such as:

� Basic Linear Algebra Subroutines (BLAS)

� Linear Algebraic Equations

� Eigensystem Analysis

� Fourier Transforms

ESSL products are compatible with public domain subroutine libraries such as
Basic Linear Algebra Subprograms (BLAS), Scalable Linear Algebra Package
(ScaLAPACK) and Parallel Basic Linear Algebra Subprograms (PBLAS). Thus,
migrating applications to ESSL is straightforward.

The ESSL library for Blue Gene/L is based on ESSL version 4.2 for p-series
Linux/AIX. Many functions has been optimized to benefit from the Blue Gene/L

Function libm.a libmass.a libmassv.a range

sqrt 102 40 7.9 (0,10**10)

rsqrt 134 35 5.5 (0,10**10)

exp 167 56 22.8 (-50,50)

log 316 68 23.6 (0,10**10)

sin 191 66 29 (0, 2pi)

cos 199 66 29 (0, 2pi)

tan 315 90 44 (0, 2pi)

atan 220 114 27 (-100,100)

sinh 266 81 32 (-50,50)

cosh 227 67 31 (-50,50)

atan2 396 127 - (-50,50) both x
and y

pow 522 167 74 (0,20) both x
and y
170 Unfolding the IBM ̂Blue Gene Solution

double FPU. Nevertheless, a special ESSL release for Blue Gene/L is targeted
for late in 2005.

All arrays in your application, regardless of the type of data, should be aligned to
ensure optimal performance. Alignment exceptions can be figured out though
compilation options.

The following figures (Figure 6-3 and Figure 6-4) show example comparisons of
ESSL with standard scalar routines. The first one deals with scalar-vector
multiplies and the second one with matrix-matrix multiplication.

The special version of matrix-matrix multiply has been specially developed on
Blue Gene/L. This version runs at more than 85% of the peak on a single
processor.

Figure 6-3 Results of ESSL DSCAL scalar-vector routine (BLAS1 routine)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
10

00
00

11
00

00
12

00
00

13
00

00
14

00
00

15
00

00
16

00
00

17
00

00
18

00
00

19
00

00
20

00
00

Vector Size

0

50

100

150

200

250

M
Fl

op
s

Scalar

ESSL -O5 440
 Chapter 6. Porting applications 171

Figure 6-4 Results of ESSL DGEMM matrix-matrix routine (BLAS3 routine)

FFT library
Version 2.21.5 of Fast Fourier Transform in the West (FFTW) has be tuned for
Blue Gene/L double FPU by the Institute for Analysis and Scientific Computing,
at the Vienna University of Technology. This library is called Vienna FFT.

The Vienna FFT code is 40% faster than the best scalar Spiral generated code,
and 5 times faster than the mixed-radix FFT implementation provided by the
GNU scientific library (GSL). For more details see “Automatic Optimized FFT
Codes for Blue Gene/L Supercomputer” available at:

http://www.ece.cmu.edu/~pueschel/papers/fftbgl.pdf.

Figure 6-5 and Figure 6-6 show the performance on a Blue Gene/L system of the
Vienna complex-1D FFT function (DFT). Observe that the performance of the
Vienna library is especially higher for the power of two. When the size of the
vector increases, and thus the size of the data becomes larger than the L3
cache, the performance of Vienna FFT decreases. For large messages, it may
be better to link with a standard FFTW library compiled without SIMD instruction
generation.

10 50 100 200 300 400 500 600 700 800 900 1000

M=N=K Value

100

200

300

400

500

600

700

800

900

1000

M
Fl

op
s

Scalar

ESSL with -O5 440
172 Unfolding the IBM ̂Blue Gene Solution

Figure 6-5 DFTn, double precision, complex-to-complex

Figure 6-6 DFTn, double precision, complex-to-complex

Complex 1D powers of two FFT on BlueGene/L
IBM DD2 @ 700 MHz MAP Vectorization vs. XL C Vectorization

0

200

400

600

800

1000

1200

1400

1600

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

Problem size

Ps
eu

do
 M

flo
p/

s
ru

nt
im

e
/ N

 ld
 N

FFTW 2,1,5 scalar, IBM XLC
FFTW 2,1,5, IBM XLC Vectorization
BGL-FFTWGEL, SIMD, IBM XLC

Complex 1D non-powers of two FFT on BlueGene/L
IBM DD2 @ 700 MHz MAP Vectorization vs. XL C Vectorization

0

200

400

600

800

1000

1200

1400

6 9 12 15 18 24 36 80 10
8

21
0

50
4

10
00

19
60

47
25

10
36

8
27

00
0

75
60

0

16
53

75

Problem size

Ps
eu

do
 M

flo
p/

s
ru

nt
im

e
/ N

 ld
 N

FFTW 2,1,5 scalar, IBM XLC
FFTW 2,1,5, IBM XLC Vectorization
BGL-FFTWGEL, SIMD, IBM XLC
 Chapter 6. Porting applications 173

6.2.8 Performance measurement
This section explains how to measure the performance on Blue Gene/L compute
nodes.

Time functions
The majority of the standard time functions are available on Blue Gene/L
compute nodes: gettimeofday(), time(), times(), getrusage(), and so forth. It
may be necessary to change some time functions to take into account the
features on the Compute Node Kernel.

During the porting step you can encounter some issues due to either the
implementation of the CNK features or some features that have yet to be fixed.
Some issues we faced during application porting were the following:

� Elapsed time is equal to CPU and the system is equal to 0. Moreover, there
are no page faults. You can call getrusage(), which displays information
about how the resources are used by the process, but the values that it
returns are meaningless.

� The time function reports seconds since the partition was booted, instead of
seconds after the reference time. This issue may be fixed in a future release.

� The sysconf(_SC_CLK_TCK) subroutine determines the number of clock ticks
per second. All time values reported by the time functions are measured in
terms of the number of clock ticks used. The times function on Blue Gene/L
provides correct time values, but we noticed that sysconf can report a wrong
number of clock ticks. This issue may be fixed in a future release.

Blue Gene/L runtime provides some functions to get information about the
compute node. For more details, refer to Appendix B, “BG/L runtime system
calls” on page 331. The function rts_get_timetable() returns the number of
cycles since the partition was booted. This function can be used for timing. The
number of cycles is converted to seconds using the processor frequency (700
MHz).

Example 6-26 shows how to get the elapsed and cpu time, in seconds, using the
rst_get_timetable() function in both C and FORTRAN.

Note: On Blue Gene/L, we recommend validating the time functions with small
test cases before running the real application. We recommend that you use
either gettimeofday() or rts_get_timetable().
174 Unfolding the IBM ̂Blue Gene Solution

Example 6-26 how to use rts_get_timetable in FORTRAN and C

--- in Fortran
...
integer(8) rts_get_timetable
real(8) time, time1, frequency
...
frequency = 700.D6
time = rts_get_timetable()
...
time1 = rts_get_timetable()
write(6,*)’Total time’,(time1-time)/frequency
end

--- in C
#include <rts.h> /* header for rts_get_timetable */
...
#define frequency 700000000
double time, time1
...
time = (double) rts_get_timetable();
...
time1 = (double) rts_get_timetable();
time1 = (time1 - time)/frequency;
printf(“Total time %f \n”,time1);

The profiling file
On Blue Gene/L the application can be compiled with the standard -p or -pg
options to produce an execution profile. Nevertheless, currently the -p or -pg
mechanism is only partly ported. The function list and the call numbers are
correct but the timing field is meaningless. This issue should be fixed.

In complement of standard profiling options, blrts compiler for Blue Gene/L
provides a specific option -qdebug=function_trace or -qxflag=function_trace
intersect two functions __function_trace_enter and __function_trace_exit at
the beginning and the exit of each function of the applications. This function can
be used to define your own profiling tools. All the details are given in 6.5.2,
“Instrumenting function entry and exit” on page 196.

Blue Gene/L ASIC hardware counters
These topics are covered in more detail in 5.4.4, “BG/L hardware counters” on
page 118 and Appendix G, “Hardware counters” on page 369.
 Chapter 6. Porting applications 175

6.3 Porting parallel applications
When porting parallel applications to Blue Gene/L, several areas need to be
considered:

� The parallel programming model

� The supported MPI features

� Special behavior of the MPI implementation on Blue Gene/L

� Performance and scaling issues

In this section, we cover each of these areas. Chapter 7, “Massively parallel
tuning” on page 207 contains further material on MPI performance and scaling.

6.3.1 The BG/L programming model
Blue Gene/L has a distributed memory system and uses explicit message
passing to communicate between tasks running on different nodes. Neither
OpenMP nor thread parallelism is supported. If your application uses any of
these forms of shared memory parallelism, it needs to be converted to the
message passing model in order to use it on Blue Gene/L.

Message Passing Interface (MPI) is the supported message passing standard.
MPI is the industry standard for message passing. Further information on MPI
can be found at:

http://www.mpi-forum.org/

If your code uses other message passing libraries, you have to either change the
message passing calls to MPI, or use an intermediate layer that maps your
library’s calls onto MPI.

Note: Even in virtual node mode, the two tasks running on the two CPUs in a
BG/L chip are doing message passing to communicate with each other.
However, they do not use the torus network; instead, they use a memory area
in the chip’s scratchpad memory. This is similar to the shared-memory MPI
communication that takes place between tasks within a pSeries SMP node
(where inter-node communication uses the interconnect like the eServer High
Performance Switch).
176 Unfolding the IBM ̂Blue Gene Solution

6.3.2 MPI features supported on BG/L
The current MPI implementation on Blue Gene/L supports the MPI Version 1.2
standard. This level comprises everything in the MPI Version 1.1 standard
document1.

A subset of the MPI Version 2 features is supported, and work is in progress to
add some additional capabilities to the BG/L implementation. With regard to
porting applications, it is important to understand the following limitations of the
current MPI library:

� MPI2 process creation and management are not supported.

� MPI2 one-sided communications are not supported.

� The MPI library is not thread-compliant in the MPI2 sense.

The MPI_Init_Thread function is available, but it will always return
MPI_THREAD_SINGLE as the provided argument, regardless of the desired level
of thread support that’s passed in as the required argument.

� MPI2 I/O is not supported yet. This feature is currently being developed.

Due to the distributed nature of the I/O infrastructure, MPI-IO is important for
a portable mechanism to do I/O on the Blue Gene/L system: there are many
I/O nodes which individually only provide limited I/O capabilities. This issue is
discussed in more detail in 6.4, “I/O operations” on page 191.

When starting applications on Blue Gene/L, there are some additional details
that need to be considered:

� Only executables can be started. Shell scripts are not supported.

The microkernel running on the compute nodes does not provide any
mechanisms for a command interpreter or shell. So if your application
consists of a number of shell scripts that control its workflow, this will need to
be adapted. If you start your application with the mpirun command, you
cannot start the main shell script with mpirun, but rather have to run the
scripts on the front-end node and only call mpirun at the innermost shell script
level where the main application binary is called.

� Launching an application on Blue Gene/L is done in the single program,
multiple data (SPMD) model. Within one run, you cannot load one executable
onto a subset of the compute nodes and a different executable onto another
subset of the compute nodes. If you need some sort of multiple program,
multiple data (MPMD) functionality, you can build that into your code by a

1 MPI - A Message Passing Interface Standard. Message Passing Interface Forum. June 12, 1995.
and the additional features and clarifications in chapter 3 of the MPI Version 2.0 standard document,
MPI-2 - Extensions to the Message Passing Interface. Message Passing Interface Forum. July 18,
1997.
 Chapter 6. Porting applications 177

clause similar to the following. This shifts the multiple program feature from
the main program level into the subprogram level:

IF (myrank==something) THEN
CALL some_subprogram(some_args)

ELSE
CALL another_subprogram(some_other_args)

END IF

This way you can load a single executable onto all nodes, which then
branches into different subprograms depending on the local MPI rank.

Apart from these limitations, the MPI library on Blue Gene/L provides all the
usual MPI functionality. Users should not have any difficulties porting programs
that just contain some basic MPI_Send and MPI_Recv calls. However, in more
complex situations there may be some semantic subtleties that you need to
understand. In 6.3.3, “The BG/L MPI implementation” on page 178 we discuss
some of the implementation details that may cause an MPI program on Blue
Gene/L to behave differently than it does on other platforms.

6.3.3 The BG/L MPI implementation
The MPI implementation on Blue Gene/L is derived from the MPICH2
implementation of the Mathematics and Computer Science Division (MCS) at
Argonne National Laboratory. Additional information can be obtained from:

http://www-unix.mcs.anl.gov/mpi/mpich/

To support the Blue Gene/L hardware, the following additions and modifications
have been made to the MPICH2 software architecture (see Figure 6-7):

� A bgl driver has been added underneath the MPICH2 Abstract Device
Interface (ADI).

� Three types of glue code are provided for (some of) the MPI collectives; one
for each of the three networks that can be used for MPI communication on
Blue Gene/L:

– torus for the torus network

– tree for the collective network

– GI for the barrier (global interrupt) network

� A bgltorus variant for MPICH2’s process management interface.
178 Unfolding the IBM ̂Blue Gene Solution

Figure 6-7 BG/L MPI software architecture

From the application programmer’s view, the most important aspect of these
changes is the fact that the collective operations may utilize different networks
under different circumstances.

In the remainder of this section we discuss several sample MPI codes to explain
some of the implementation-dependent behaviors of the MPI library.

Example: Deadlock the system
The following code (Example 6-27) is actually illegal according to the MPI
standard. Each side does a blocking send to its communication partner before
posting a receive for the message coming from the other partner.

Example 6-27 Deadlock code

TASK1 code:

MPI_Send(task2, tag1);
MPI_Recv(task2, tag2);

TASK2 code:

MPI_Send(task1, tag2);
MPI_Recv(task1, tag1);
 Chapter 6. Porting applications 179

In general, this has a high probability to deadlock the system. Obviously, you
should not program this way, and you should make sure that your code conforms
to the MPI specification. You can achieve this by either changing the order of
sends and receives, or by using non-blocking communication calls (see
Example 6-28).

The MPI implementation on Blue Gene/L was designed to avoid a deadlock in
situations like the one just described. The runtime system will try to avoid
deadlocks by allocating additional memory to deal with messages that arrive
unexpectedly (for example, before a receive has been posted on the local task).
It will eventually run out of memory, in which case it will stop the application with
an error message.

So while you certainly should not rely on the runtime system to correctly handle
non-conforming MPI code, it is easier to debug such situations when you get a
runtime error message than trying to detect a deadlock and trace it back to its
root cause.

Example: Forcing MPI to allocate too much memory
Here is a slightly different example, in which one task sends a number of
messages to a second task, but the messages are received in the reverse order
at the sender side (Example 6-28).

Example 6-28 Forcing MPI to allocate too much memory

TASK1 code:

MPI_ISend(task2, tag1);
MPI_ISend(task2, tag2);
...
MPI_ISend(task2, tagN);

TASK2 code:

MPI_Recv(task1, tagN);
MPI_Recv(task1, tagN-1);
...
MPI_Recv(task1, tag1);

This is legal MPI code because the sends are nonblocking: the first task will be
able to send all its messages off to task 2. So task 2 will eventually receive the
tagN message, which will satisfy its first blocking receive. After this, all the
remaining messages will have already arrived so the remaining receives will also
complete.
180 Unfolding the IBM ̂Blue Gene Solution

However, as in the previous example, the MPI runtime on task 2 will need to
allocate additional buffer space to handle the N-1 messages that arrive
unexpectedly before the tagN message. This may cause the application to
terminate if insufficient physical memory is available.

This is a typical example of a legal code which is more likely to fail on Blue
Gene/L than on other systems because of the limited memory on the compute
nodes. It is best to avoid situations that may require temporary buffering, as in
this case, by trying to match the receive order with the order in which the
messages are sent.

Example: Violating MPI buffer ownership rules
A number of problems can arise when the send/receive buffers that participate in
asynchronous message passing calls are accessed before it is legal to do so. All
of the following examples are illegal and must be avoided.

The most obvious case is when you write to a send buffer before the MPI_Wait
for that request has completed:

req = MPI_Isend(buffer,&req);
buffer[0] = something;
MPI_Wait(req);

This code will result in a race condition on any message passing machine:
Depending on runtime factors that are outside the application’s control,
sometimes the old buffer[0] will be sent and sometimes the new value.

A more subtle case is a read from the send buffer before the MPI_Wait for that
request completes:

req = MPI_Isend(buffer,&req);
z = buffer[0];
MPI_Wait(req);

Although not as obvious as the write case, this is also prohibited by the MPI
standard. The MPI runtime system has full control over the buffer until the
MPI_Wait for the request completes, and the application is not even allowed to
read it. In the current BG/L implementation it is likely that such code will work as
expected, but there is no guarantee that future versions of the MPI library will
behave the same way.

In the last example in this thread, a receive buffer is read before the MPI_Wait for
the asynchronous receive request has completed:

req = MPI_Irecv(buffer);
z = buffer[0];
MPI_Wait (req);
 Chapter 6. Porting applications 181

While this code is again illegal, it is nevertheless likely to produce the expected
results on other message passing machines. But it is almost certain to produce
wrong results on Blue Gene/L because of the way the BG/L runtime system
handles asynchronous messages. Since there is no interrupt-driven notification
from the network device drivers to the MPI library, the behavior is notably
different from MPI implementations on a full UNIX operating system, which
provides interrupts to inform the MPI library of incoming packets.

Example: Not waiting for successful MPI_Test
Here is another example which can cause memory overruns on Blue Gene/L. If
you have initiated an asynchronous communication, the MPI standard requires
that you issue an MPI_Wait for the request or call MPI_Test until it eventually
returns true. So the following is illegal:

req = MPI_Isend(..., &req);
MPI_Test(req);
... do something else; forget about req ...

Here the programmer issued an MPI_Test for the request, and potentially
decided to do some more computation if the test was unsuccessful. Maybe
completion of the send could later be inferred from other properties of the
program, so a final wait or test was never issues.

On many architectures, this (illegal) code will work. It will cause some small
memory leaks because the request objects never get deallocated. But usually
these opaque MPI_Request handles are simply integer scalars enumerating the
requests, so their leaking will normally go unnoticed.

On Blue Gene/L, however, forgetting to wait for final completion of asynchronous
requests is a severe problem. On one hand, all memory leaks are much more
visible because of the limited memory on the compute node. On the other hand,
MPI_Request objects are much bigger on BG/L than on other architectures, so
the system will quickly run out of memory if request objects are not destroyed.
182 Unfolding the IBM ̂Blue Gene Solution

Example: Interlocking collectives with point-to-point calls
Consider the following code, in which task 1 issues a barrier synchronization
before the preceding asynchronous send is known to have completed:

TASK1 code:

req = MPI_Isend(task2, &req);
MPI_Barrier();
MPI_Wait(req);

TASK2 code:

MPI_Recv(task1);
MPI_Barrier();

The receiver will not join the barrier before its (blocking) receive has completed.
So this code will potentially deadlock if task 1 enters the barrier before the
asynchronous send did complete, and if task 1 relies on the MPI_Wait to
complete the send operation.

On Blue Gene/L, this kind of code works because the asynchronous send is
handled by the torus network, whereas the barrier is handled by the barrier
(global interrupt) network. So even though task 1 may have already entered the
barrier, it is still possible to make progress on the point-to-point communications
on the torus network and the blocking receive on task 2 will eventually complete.

To avoid unexpected behavior, you should not interlock collectives with
point-to-point communications. For all collectives except MPI_Barrier, the MPI
standard clearly states that programmers should not rely on collective
communications to synchronize the tasks, and at the same time should structure

Note: This is an artifact of the way the BG/L implementation addresses a
scaling issue with asynchronous requests: On many systems, the MPI runtime
system pre allocates a buffer on each task that can hold a certain number of
messages from every other task in the application. This is not feasible for a
system with tens of thousands of nodes and only a small memory per node.
So BG/L uses an approach where such buffers are attached to the
MPI_Request objects of ongoing messages, rather than pre allocating buffer
space for all possible partners. In reality, not every task will send to every
other task, so this is a much more efficient way to manage buffer space for
asynchronous messages. But you need to make sure that these buffers get
deallocated when they are no longer needed, and waiting for the request to
complete is the only way to do this.
 Chapter 6. Porting applications 183

their program in a way that allows for such synchronization to take place without
causing a deadlock in the point-to-point communications.

Example: Send flood
Here is a piece of code in which all tasks send some data to task 0:

TASK 0 code:

for (i=1; i<N; i++)
 MPI_Recv(task[i]);

TASK 1 to N-1 code:

MPI_Send(task0);

While this is perfectly legal MPI (and may make sense for collecting results on a
master node for a small cluster), it is a bad idea to use this communication
pattern on Blue Gene/L. This example actually illustrates two separate issues:
One is simply the fact that it is not scalable to collect data from each task onto a
single task. Eventually the collecting task 0 will run out of memory. The second is
once again the fact that the receiver side will need to allocate additional buffer
space: chances are that the N-1 messages sent from the other tasks will not
arrive in exactly the rank order, so task 0 must buffer them to be able to complete
the sequence of (blocking) receives.

6.3.4 MPI point-to-point performance
All MPI point-to-point communications use the torus network. As described in
2.1.6, “Communications” on page 19, there are several possible routes from a
sender to a receiver on a torus network (unless they are nearest neighbors, of
course). To understand and tune the performance of point-to-point
communication, it is important to understand that two kinds of network routing
are used on the Blue Gene/L torus network:

� Deterministic routing

In this mode, each packet from a sender to a receiver goes along exactly the
same path. One advantage of this is that the packet order is always
maintained without additional logic. However, this technique also creates
network hot spots if there are several point-to-point communications going on
at the same time whose deterministic routes cross on some node.

� Adaptive routing

When adaptive routing is used, different packets from the same sender to the
same receiver may travel along different paths. The exact route is determined
at runtime depending on current load. This technique is generating a more
184 Unfolding the IBM ̂Blue Gene Solution

balanced network load, but at the price of more CPU utilization to make the
routing decisions at runtime. Another disadvantage is that packets may
overtake each other, so additional logic is needed to reassemble them in the
correct order.

The decision whether deterministic or adaptive routing is used depends on the
protocol that is used for the communication. There are three different protocols in
the Blue Gene/L MPI implementation:

� MPI short protocol

This is the protocol used for very short (< 250 bytes) messages, which consist
of a single packet. These are always deterministically routed.

� MPI eager protocol

The eager protocol is used for medium size messages. It sends a message
off to the receiver without negotiating with the receiving side that the other
end is ready to receive the message. The eager protocol also uses
deterministic routes for its packets. The latency for eager messages is around
3.3 µs.

� MPI rendezvous protocol

Large (> 10 KBytes) messages are sent using the rendezvous protocol. In
this case an initial connection between the two partners is established. Only
after that will the sender begin to send packets to the receiver, which is then
known to be ready to accept the packets. This protocol uses adaptive routing
and is optimized for maximum bandwidth. Naturally, the initial rendezvous
handshake increases the latency.

The crossover between eager and rendezvous protocol can be adjusted by the
user. Similar to the MP_EAGERLIMIT environment variable in the AIX Parallel
Environment, the Blue Gene/L MPI library supports a BGLMPI_EAGER variable
to set the message size (in bytes) above which the rendezvous protocol should
be used. As a general guideline, you should:

� Decrease the rendezvous threshold if:

– Many short messages are overloading the network

– Eager messages are creating artificial hot spots

– The program is not latency-sensitive

Note: The MPI semantics (messages between two partners have to be
received in the same order they were sent) is always guaranteed.
 Chapter 6. Porting applications 185

� Increase the rendezvous threshold if:

– Most communication is nearest-neighbor, or at least close in Manhattan
distance

– You mainly use relatively long messages

– You need better latency on medium size messages

It is advisable to experiment with your application using different settings for the
eager limit. In addition to this protocol tuning, the mapping of MPI tasks onto the
torus network is also crucial because it attempts to minimize the Manhattan
distance of the partners. So both optimization techniques and their
interrelationships should be studied. Refer to 7.1, “Application mapping” on
page 208 for details on mapping.

Figure 6-8 on page 186 shows the bi-directional message bandwidth on the torus
network as a function of the message size, for one to four simultaneous pairs of
nearest neighbor communications. The protocol switch from short to eager is
visible for all four curves, whereas the eager to rendezvous switch is most
pronounced for the single pair case.

Figure 6-8 Bi-directional bandwidth versus message size

1 byte/cycle= 700MB/sec
186 Unfolding the IBM ̂Blue Gene Solution

The raw hardware bandwidth of each link on the torus network is 2 bit or
0.25 byte per cycle per direction, which is 175 MB/sec per link per direction on
the 700 MHz nodes. So the peak bi-directional bandwidth for a single pair is
limited by the torus network hardware to 0.5 byte/cycle, and for two pairs to
1 byte/cycle. For three and more pairs of simultaneous communications, the
bandwidth does not increase over the two-pair case: it is now limited by the
node’s ability to drive the communication rather than by the network bandwidth.

Some more considerations regarding point-to-point performance:

� Don’t attempt to overlap communication and computation.

While this may work on other architectures, trying to overlap communication
and computation is generally a bad idea on Blue Gene/L. You should instead
organize your program in such a way that computation phases alternate with
communication phases, and of course try to keep your program’s tasks as
synchronized as possible.

� Avoid load imbalance.

This is important for all parallel systems, but when scaling to the high
numbers of tasks that are possible on Blue Gene/L, it is especially important
to pay close attention to load balancing.

� Avoid buffered and synchronous sends; post receives in advance.

The MPI standard defines several specialized communication modes in
addition to the standard send function, MPI_Send(). The buffered send
function, MPI_Bsend() should be avoided because forcing the MPI library to
perform additional memory copies will slow down the application, and you
may also run short of memory so additional buffering may not be possible at
all. Using the synchronous send function MPI_Ssend() is discouraged
because it is a non-local operation that will incur an increased latency
compared to the standard send. On the other hand, the ready send operation
MPI_Rsend() may be used. A ready send is only allowed if a matching receive
has already been posted. This helps communication performance, as does
posting receives in advance of any send operation, because the receiver will
be expecting the incoming messages. Unexpected messages need to be
buffered, whereas expected messages can be transferred immediately into
the user’s receive buffer.

� Avoid vector data and non-contiguous data types.

While the MPI derived data types can elegantly describe the layout of
complex data structures, using these data types is generally detrimental to
performance. Many MPI implementations will pack (that is, memory-copy)
such data objects before sending them, which is contrary to the original
purpose of MPI-derived data types (namely to avoid such memory copies). In
addition, the BG/L MPI implementation makes use of the chips’ special
 Chapter 6. Porting applications 187

quad-word load and quad-word store instructions, and these require
appropriately aligned and continuous data.

6.3.5 MPI collective performance
On Blue Gene/L, you should use collective operations instead of point-to-point
communication wherever possible. The overheads for point-to-point
communications are much larger than those for collectives. Unless all your
point-to-point communication is purely nearest neighbor, it is also difficult to
avoid network congestion on the torus network. On the other hand, collective
operations can use the barrier (global interrupt) network or the torus network. If
they run over the torus network, they can still be optimized by using specially
designed communication patterns that achieve optimum performance. Doing this
by hand with point-to-point operations is possible in theory, but in general the
implementation in the BG/L MPI library will offer superior performance.

With point-to-point communication, the goal of reducing the point-to-point
Manhattan distances necessitates a good mapping of MPI tasks to the physical
hardware. For collectives, mapping is equally important because most collective
implementations prefer certain communicator shapes to achieve optimum
performance.

Similar to point-to-point communications, collective communications also work
best if you do not use complicated derived data types, and if your buffers are
aligned to 16 Byte boundaries.

While the MPI standard explicitly allows for MPI collective communications to
take place at the same time as point-to-point communications (on the same
communicator), this is generally not advisable for performance reasons. For
more about this topic, see “Example: Interlocking collectives with point-to-point
calls” on page 183.

Table 6-3 summarizes some important MPI collectives that have been optimized
on Blue Gene/L, together with their performance characteristics when executed
on the various networks of BG/L.

Table 6-3 Performance of selected optimized MPI collectives

MPI routine Condition Network Performance

MPI_Barrier MPI_COMM_WORLD barrier (global
interrupt) network

1.5 usec

MPI_COMM_WORLD collective network 5 usec

rectangular
communicator

torus network 10-15 usec
188 Unfolding the IBM ̂Blue Gene Solution

Figure 6-9 shows the MPI_Barrier() latency as a function of the number of
tasks/nodes in the system; Figure 6-10 shows the same data for
MPI_Allreduce().

Figure 6-9 MPI_Barrier latency

MPI_Broadcast MPI_COMM_WORLD collective network 350 MB/sec

rectangular
communicator

torus network 320 MB/sec

MPI_Allreduce MPI_COMM_WORLD
fixed-point

collective network 350 MB/sec

MPI_COMM_WORLD
floating point

collective network 40 MB/sec

Hamilton path torus network 120 MB/sec

rectangular
communicator

torus network 80 MB/sec,
10-15 usec latency
for small messages

MPI_Alltoall[v] any communicator torus network 84-97% peak

MPI_Allgatherv torus network same as broadcast

MPI routine Condition Network Performance
 Chapter 6. Porting applications 189

Figure 6-10 MPI_Allreduce latency

6.3.6 Co-processor mode versus virtual node mode
We recommend that you test your application both in communication
co-processor (CO) mode and in virtual node (VN) mode. While it is possible to
give some general guidelines about when to use which mode, the most reliable
way to judge the performance of an application is to actually run it.

In CO mode, the main disadvantage is that only one of the two CPUs on the chip
is available to execute user code, thus cutting the theoretical peak performance
of the system in half. Some of the communication processing will be offloaded to
the second CPU, so the more communication intensive your application is the
more the second CPU will be utilized. On the other hand, this one CPU has the
complete 512 MBytes of memory to itself, and also has all the bandwidth into L3
and the main memory. So whenever the tasks demand a high amount of memory
and/or high memory bandwidth, CO mode may achieve a higher overall
sustained performance than VN mode. Some codes require so much memory per
task that they will not run at all in VN mode. In such cases you have no choice
but to use CO mode.

The attraction of VN mode is twice the theoretical peak performance, of course.
However, this is unrealistic in most cases and the achievable sustained
190 Unfolding the IBM ̂Blue Gene Solution

performance is very much dependent on the application. Compared to CO mode,
in VN mode the cache, memory, and network bandwidths are halved, as are the
cache and memory sizes available to the application. For applications which are
not very demanding with respect to these resources. VN mode can nevertheless
result in significant performance improvements. Chapter 8 contains some
examples where VN mode worked very well, sometimes surprisingly well. So it is
always worth investigating the performance of your application in both modes.

6.4 I/O operations
The method used for reading data into the compute nodes and writing data out
from the compute nodes is completely different on Blue Gene/L than on other
systems which readers may be familiar with.

It may be possible to run code on Blue Gene/L by following the rules for porting
code from other platforms, enabling the code to compile and run, but the actual
performance of the code may be limited by the way the code is performing I/O.

Understanding the I/O implementation on Blue Gene/L is a pre-requisite to
understanding how to restructure code to circumvent I/O bottlenecks.

On the other hand, anyone wanting to port and run codes which are not limited
by I/O performance need not understand the Blue Gene/L I/O architecture.

This section is an overview of how I/O operations are handled by Blue Gene/L,
and also includes some discussion of how it might be possible to make code
enhancements to improve aggregate I/O performance.

6.4.1 How the I/O works
Each Blue Gene/L node has five network connections:

1. Gigabit Ethernet
2. JTAG
3. Torus
4. Collective (sometimes called tree)
5. Global Interrupt (sometimes called barrier)

There is provision for all five network connections on every Blue Gene/L chip, but
whereas the I/O nodes have a Gigabit Ethernet interface, the compute nodes do
not, meaning the network connection from the chip does not connect to anything.

Conversely, the I/O nodes have no connections to the torus network, which is
used for the majority of MPI communication between compute nodes.
 Chapter 6. Porting applications 191

The network connections are shown in Figure 2-7 on page 29. The only other
external connection shown on the Blue Gene/L chip is the one to the DRAM
memory that is mounted on the Blue Gene/L compute card in the form of nine
separate chips.

Starting from the perspective of the I/O node and working out to the actual disk
storage, I/O such as data forming part of a write operation takes the following
route:

1. Since the compute nodes do not have direct access to the external network,
all I/O traffic is function shipped from the compute nodes to the I/O nodes.
This data is transmitted across the Collective network.

Each compute node has 3 links in each direction (send, receive) and each
link has a bandwidth of 2.8Gbps.

2. I/O traffic reaching the I/O nodes is sent out across the Gigabit Ethernet link
to the shared file system using the NFS protocol.

This means each I/O node has a theoretical maximum capability of 1Gbps,
but actual bandwidth will be lower than this because of network configuration,
network contention, and NFS client configuration.

3. I/O traffic reaches the NFS server and is written to the shared file system in
some way, exactly how we do not really care at this point.

When considering maximum I/O throughput from a single compute node, clearly
the bandwidth of the internal Blue Gene/L collective network exceeds the
bandwidth available to the I/O node to the external network. So the limit on
performance for a single compute node will be the performance of the I/O node
to which it is attached, which will be limited either by the performance of the
single Gigabit Ethernet connection out of the I/O node or by the performance of
the parallel file system server to which it connects.

If multiple compute nodes are performing I/O operations in parallel, their
performance results will vary depending on whether they use different I/O nodes
or the same I/O node.

If multiple compute nodes can use multiple I/O nodes, the performance limit will
probably be the performance of the NFS servers to which the I/O nodes connect.

All I/O traffic passes across an Ethernet network, which is used to interconnect
all the components of the Blue Gene/L system as shown in Figure 6-11.
192 Unfolding the IBM ̂Blue Gene Solution

Figure 6-11 Blue Gene/L network-centric view

6.4.2 Compute nodes mapping to I/O nodes
Every Blue Gene/L partition is guaranteed to contain at least one I/O node as
well as a number of compute nodes. A Blue Gene/L partition cannot operate
without at least one I/O node.

More than one I/O node can be used in a single Blue Gene/L partition, and for
partitions which contain large numbers of compute nodes this is in fact likely to
be the case.

The total number of I/O nodes in a Blue Gene/L rack can vary between a
maximum of 128 I/O nodes (one I/O node for every eight compute nodes) and a
minimum of 8 I/O nodes (one I/O node for every 128 compute nodes). The total
number of I/O nodes per rack is determined when the Blue Gene/L rack is
configured and ordered, although it can subsequently be changed by the addition
or removal of I/O node cards.

When more than one I/O node exists in a partition, a many-to-one mapping
exists between a subset of the compute nodes in the partition and one I/O node.
Each compute node maps to one and only one I/O node in the partition.

Raid Disk
Servers
Linux

Archive (128)
WAN (506)
Visualization(128)

Switch
Host
FEN: AIX or Linux
SN

762 36

226

1024

 GPFS + NFS

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR
 Chapter 6. Porting applications 193

The file /bgl/BlueLight/ppcfloor/bglsys/include/bglpersonality.h defines structures
and function calls that applications can use to discover information about the
configuration of the partition and of how each separate processor fits into the
configuration. See Appendix B, “BG/L runtime system calls” on page 331 for
more information on these function calls.

For example, BGLPersonality_numIONodes(p) will return the number of I/O nodes
in the partition.

A code fragment that prints information about the environment of the processor
on which the particular instance of code is running is shown in Example 6-29.

Example 6-29 Code fragment to query Blue Gene/L environment

....
#include <rts.h>
#include <bglpersonality.h>

int main (int argc, char **argv)
{
 int num_procs, my_rank;
 char location[BGLPERSONALITY_MAX_LOCATION];
 BGLPersonality personality;
....
printf("Number of IO nodes: %u, Number of compute nodes: %u\n",
 BGLPersonality_numIONodes(&personality),
 BGLPersonality_numComputeNodes(&personality));
printf("This node is in PSET number: %u, Total number of compute nodes in this
PSET: %u\n",
 BGLPersonality_psetNum(&personality),
 BGLPersonality_numNodesInPset(&personality));
printf("Total number of IO nodes in this block: %u\n",
 BGLPersonality_numIONodes(&personality));

This code introduces the concept of a processor set represented in the code by
pset. Each pset has a number (starting from 0) and each pset contains a single
I/O node and a number of compute nodes.

On a single 32-node partition with a single I/O node the results from running this
code are not surprising: every compute node returns the same values, as shown
in Example 6-30.

Example 6-30 Result of querying simple Blue Gene/L environment

stdout[0]: Number of IO nodes: 1, Number of compute nodes: 32
stdout[0]: This node is in PSET number: 0, Total number of compute nodes in
this PSET: 32
stdout[0]: Total number of IO nodes in this block: 1
194 Unfolding the IBM ̂Blue Gene Solution

In all cases, each compute node is a member of one pset, which can be
identified by a number, and all compute nodes in the same pset perform their I/O
through the same I/O node. Also, every Blue Gene/L partition contains a number
of psets equivalent to the number of I/O nodes in the partition.

6.4.3 Do not use one file per I/O node
To increase the aggregate I/O it is a good idea to make multiple compute nodes
initiate I/O operations, but you have to make sure that they each don’t perform
these operations on separate files. Having 65,536 compute nodes driving I/O
separately is probably OK, but not if they cause 65,536 distinct files on the file
system to be opened in parallel. This may generate a lot of file system metadata
activity which may result in a very slow file system.

6.4.4 Do not use one task doing all I/O
A common model for parallel codes is one in which all I/O is performed by a
single node even though the computation work is shared between the nodes. If
an application which conforms to this model is ported to Blue Gene/L, the I/O
performance will be limited by the performance of a single compute node, which
means that it will also be limited by the performance of a single I/O node.

The first step to improve total I/O performance of a Blue Gene/L cluster is to
share I/O operations across multiple I/O nodes by causing the operations to be
initiated from multiple compute nodes which are members of different psets.

If the I/O operations can be spread evenly across all the compute nodes, this will
probably lead to a balanced load across all the I/O nodes.

However, if it is possible to maximize aggregate I/O performance by having all
the compute nodes perform I/O operations, it is probably unwise to have each
compute node performing I/O on a separate file in the file system. This would
lead to usability problems with large jobs (how could we make use of 65,536
separate small output files, for example), and would also lead to poor
performance by making the I/O servers perform operations on large numbers of
files in parallel.

Note: In most Blue Gene/L implementations, spreading the I/O load across all
the compute nodes will indeed lead to a balanced load across all the I/O
nodes. It is unlikely, but possible, that the ratio of compute nodes to I/O nodes
is not constant across a single partition, if different Blue Gene/L midplanes
have been implemented with different I/O node ratios. Hence the use of the
word probably in the previous paragraph.
 Chapter 6. Porting applications 195

If the I/O operations are spread across a subset of the compute nodes, use care
to ensure that the compute nodes chosen map to different I/O nodes. This may
require explicit programming support.

6.5 Debugging
Debugging applications on Blue Gene/L is different from debugging on
stand-alone machines or clusters because the application runs on the compute
nodes which only have a microkernel, whereas the application developer is
logged in to the front-end node.

Currently, very little system-level information about the compute nodes’ status is
available. Running commands like ps or top to find out the CPU and memory
usage of the compute nodes is not possible on Blue Gene/L. A job shown as
running in the MMCS may be performing useful work, or may be deadlocked and
not perform any work at all.

Therefore, all debugging must be done explicitly in the application program. In
this section we discuss several ways to do this.

6.5.1 Debugging by printf() or PRINT
Everyone knows the time-proven debugging technique of inserting printf() or
PRINT lines into the program to print out progress information or values of
variables. This does work on Blue Gene/L too, of course. All standard output and
standard errors will be written to the job’s <block-id>-<job-id>.stdout and
<block-id>-<job-id>.stderr files.

If you are debugging a parallel application but are only interested in output from a
single task, it is useful to limit the display of stdout/stderr to just one task. This
can be easily done by filtering the output files like this:

grep "stdout\[0\]" R00-M0-N0_1-7255.stdout

This will show only the output from MPI task 0.

6.5.2 Instrumenting function entry and exit
The XL compilers have an option which allows calling user-supplied functions on
entry and exit of all functions/subprograms in the application. We have found this
facility very useful for many situations where there are no other tools available to
dig into a problem. The strength of this approach comes from the fact that no
modifications of the original source files are necessary.
196 Unfolding the IBM ̂Blue Gene Solution

To instrument your program’s function calls, perform the following steps:

1. Write the instrumentation code.

The user has to provide two functions, which will be called by the runtime
system, with the following arguments:

__function_trace_enter ("routineName", "filename", lineNo)
__function_trace_exit ("routineName", "filename", lineNo)

Note that the function names begin with two underscores. When compiling
these routines, you should not use the compiler option to instrument function
calls or you will end up with an infinite call chain.

2. Compile the application with -qdebug=function_trace.

3. Link the application with your instrumentation code.

For small test cases you may just use the object file that contains the
instrumentation code. For more general routines that can be useful to many
users, it is a good idea to put them into a library and place the library in a
directory that is in the library search path.

4. Run the application.

Here is an example that just prints the information that the compiler provides to
the instrumentation calls. First we create a source file with the code for the two
functions (Example 6-31).

Example 6-31 Sample source file for instrumentation calls

$cat func_trace.c
#include <stdio.h>
__func_trace_enter(char *routine_name, char *file_name, int line_number)
{
 printf(“__func_trace_enter: routine %s in file %s, line %i\n”,
 routine_name, file_name, line_number);
}
__func_trace_exit(char *routine_name, char *file_name, int line_number)
{
 printf(“__func_trace_exit: routine %s in file %s, line %i\n”,
 routine_name, file_name, line_number);
}

Next we compile the source file into an object file (-g is not necessary for this
functionality), put the object file into a library, and place that library in our
/bgl/local/lib/ directory, which is in our default library search path:

$ blrts_xlc -g -c func_trace.c
$ ar rv libfunc_trace.a func_trace.o
$ chmod a+r libfunc_trace.a
$ cp -p libfunc_trace.a /bgl/local/lib/
 Chapter 6. Porting applications 197

Now the user application is compiled with the -qdebug=function_trace compiler
option, which enables the instrumentation (again, -g is not necessary for the
instrumentation, but is useful for traditional debugging), and it is finally linked with
the instrumentation code, as in Example 6-32.

Example 6-32 Using the -qdebug=function_trace option

$ blrts_xlf90 -g -c -qdebug=function_trace example.f

link using the object file:
$ blrts_xlf -g example.o func_trace.o -o example.rts
alternatively, link to the library:
$ blrts_xlf -g example.o -o example.rts -L /bgl/local/lib -l func_trace

If you execute example.rts on the compute nodes, each function entry and exit
will print a line giving the name of the routine, together with the file name and line
number.

6.5.3 Using the GNU debugger
The GNU debugger gdb can be used to debug applications running on the Blue
Gene/L compute nodes. It has a built-in mechanism to connect to applications
running on other machines, by using a gdbserver program on the remote side.

On Blue Gene/L, a special version of the gdbserver has been implemented. It is
named gdbserver.440 and is located in /bgl/BlueLight/ppcfloor/dist/sbin/. It runs
on the I/O nodes, which in turn control the compute nodes attached to them. The
gdbserver.440 process allows gdb connections via TCP/IP by opening one
socket for each compute node in the I/O node’s pset, starting at port 17300 for
the first MPI task in the pset.

In the following discussion, we refer to the gdbserver.440 server simply as the
gdbserver.

The Blue Gene/L version of gdb is available on the front-end nodes at the
following location:

/bgl/BlueLight/ppcfloor/linux-gnu/bin/powerpc-bgl-linux-gnu-gdb

Attention: We have seen cases where the port numbers reported (for
example, by the MMCS dump_proctable command) were off by one, so the
first reported port was 17299 not 17300. Still, the first port actually used was
17300 and not 17299. This is a bug that will eventually be fixed.
198 Unfolding the IBM ̂Blue Gene Solution

When debugging Blue Gene/L applications, make sure that you use this version
of gdb and not the one at /usr/bin/gdb, which is the standard version for Linux on
POWER that comes with the SLES distribution.

Compiling your executable
Similar to debugging on other platforms, you should compile your application
using the -g compiler option. If possible, the libraries you are using should also
be compiled with the -g option.

The XL compilers support the use of -g in conjunction with -O, but of course the
higher your optimizing level the more difficult will it be to associate instructions in
the executable with statements in the original source file. In general, using -O2
gives good results.

Starting gdbserver through the MMCS console
You can start gdbserver through commands in the MMCS console. However,
this method only allows you to attach to an already running job. You submit the
job as usual, and when it runs you can tell MMCS to start gdbserver for this job.
The handshaking that is required to start a job under gdbserver from the
beginning is only available through the mpirun command. This is explained in the
next section.

Here is a complete example of the steps that are needed to start gdbserver
through the MMCS console:

1. Start the mmcs_db_console and allocate a block:

$ mmcs_db_console
mmcs$ allocate R00-M0-N0_1
OK

2. Among the properties of the block are the path to the gdbserver executable
and any options that may be passed to it when it’s started. To check what is
set for the block you have allocated, use the MMCS list bglblock command
(Example 6-33).

Example 6-33 MMCS list bglblock command

mmcs$ list bglblock R00-M0-N0_1
==> DBBlock record
_blockid = R00-M0-N0_1
...
_debuggerimg = none
_debuggerparms =
202
020 (truncated)
_debuggerparmsize = 0
 Chapter 6. Porting applications 199

...

In this case the path to the gdbserver is not stored in the _debuggerimg field
of the block.

3. To be able to start gdbserver, you need to add its full path. Do this using the
MMCS setdebuginfo command (Example 6-34).

Example 6-34 MMCS setdebuginfo command

mmcs$ help setdebuginfo
setdebuginfo <blockid> <debugger> [args]
Set the debugger image, and optional debugger arguments for a block
mmcs$ setdebuginfo R00-M0-N0_1
/bgl/BlueLight/ppcfloor/dist/sbin/gdbserver.440
debug info set with success for block R00-M0-N0_1

4. If you now re-run the MMCS list bglblock command, you should see the full
path in the _debuggerimg field. No arguments to gdbserver are necessary.
The settings entered by setdebuginfo are persistent across block allocations,
so you only need to set them once (for each block, of course).

5. After you have verified that the block has a valid _debuggerimg entry, you can
submit your job. You need to remember the jobId, which you pass to the
MMCS debugjob command:

mmcs$ submitjob R00-M0-N0_1 /bgl/hennecke/debug-case.rts /bgl/hennecke
OK
jobId=9437

6. When the job has started running, and is therefore in job state R, you can use
the MMCS debugjob command to start gdbserver:

mmcs$ debugjob 9437
Job 9437 will have debugger started

If you run debugjob before the job is running, you will get an error message
similar to the following:

mmcs$ debugjob 9944
change of state for job 9944 failed.

Should this happen, just wait until the job runs and then re-issue the debugjob
command.

7. To attach your gdb session on the front-end node to a specific MPI task, you
need to find out which I/O node controls the compute node that runs this MPI
task, and the port number that gdbserver has opened for it. You can get this
information through the MMCS dump_proctable command. For each MPI task
it will list the <ip-addr>:<port> combination that you can use to attach gdb to
that MPI task (Example 6-35).
200 Unfolding the IBM ̂Blue Gene Solution

Example 6-35 Attaching gdb to an MPI task

mmcs$ dump_proctable
OK
{1} < 0, 0, 0 > IPAddress:172.24.1.118:7300 mpirank:0
{2} < 0, 1, 0 > IPAddress:172.24.1.118:7304 mpirank:4
{3} < 1, 0, 0 > IPAddress:172.24.1.118:7301 mpirank:1
{4} < 1, 1, 0 > IPAddress:172.24.1.118:7305 mpirank:5
...
{32} < 0, 3, 1 > IPAddress:172.24.1.118:7328 mpirank:28

8. With this connect information, you can now start gdb on the front-end node
and attach to the remote process, as described in “Attaching gdb to the
remote debugger” on page 203.

The main problem with this approach is that the application will start running
immediately, so you do not have the opportunity to set breakpoints or do similar
preparatory steps before the application runs. If you need to do this, you have to
use mpirun as explained in the following subsection.

Starting gdbserver through mpirun
Normally, end users should use the mpirun command to start their applications.
Not only is this more usable than dealing with the individual MMCS commands, it
also allows you to start gdbserver first without immediately starting to run the
application. This is often needed in order to attach gdb and prepare for
debugging.

Here is how you start a program under debugger control with mpirun:

1. Start mpirun with the -start_gdbserver <path-to-dbserver.440> option:

$ mpirun -partition R00-M0-N0_1 \
-exe /bgl/hennecke/debug-case.rts -cwd /bgl/hennecke \
-start_gdbserver /bgl/BlueLight/ppcfloor/dist/sbin/gdbserver.440

This will start the gdbserver process on the I/O node, and will then stop and
wait for user input (see Example 6-36).

Example 6-36 Starting the gdbserver process on the I/O node

<Dec 7 14:14:32> BRIDGE (Info) : The machine serial number (alias) is
BGL
<Dec 7 14:14:32> MPIRUN (Info) : Initializing Stand-Alone Job...
<Dec 7 14:14:32> MPIRUN (Info) : Specified partition id: R010_J214_32
<Dec 7 14:14:32> MPIRUN (Info) : Examining partition R010_J214_32...
<Dec 7 14:14:32> CMNLIB (Info) : Partition R010_J214_32 - There is at
least one "Error" BG/L job assigned to this partition
<Dec 7 14:14:32> MPIRUN (Info) : Partition R010_J214_32 initial state =
RM_PARTITION_READY ('I')
 Chapter 6. Porting applications 201

<Dec 7 14:14:32> MPIRUN (Info) : Checking partition owner...
<Dec 7 14:14:32> MPIRUN (Info) : Partition is ready
<Dec 7 14:14:32> MPIRUN (Info) : Listening thread started
<Dec 7 14:14:33> CMNLIB (Info) : Partition R010_J214_32 - There is at
least one "Error" BG/L job assigned to this partition
<Dec 7 14:14:35> MPIRUN (Info) : DB job ID is 38156
<Dec 7 14:14:35> MPIRUN (Info) : Loading BG/L job 38156 ...
<Dec 7 14:14:36> MPIRUN (Info) : Job load command successful
<Dec 7 14:14:36> MPIRUN (Info) : Job 38156 state = LOADING. Waiting...
<Dec 7 14:14:52> MPIRUN (Info) : Job Successfully loaded!
<Dec 7 14:14:52> MPIRUN (Info) : Starting debugger setup for job 38156
<Dec 7 14:14:52> MPIRUN (Info) : Set debugger executable and arguments
in block description.
<Dec 7 14:14:52> MPIRUN (Info) : Query job (38156) to find MPI ranks
for compute nodes.
<Dec 7 14:14:52> MPIRUN (Info) : Query job completed - proctable is
filled in.
<Dec 7 14:14:52> MPIRUN (Info) : Starting debugger servers on I/O nodes
for job 38156.
<Dec 7 14:14:59> MPIRUN (Info) : Debugger servers are now spawning.

<Dec 7 14:14:59> MPIRUN (Info) : Notifying debugger that servers have been
spawned.

2. You can now enter the MPI task ID you want to attach to. If you enter a task
ID, mpirun will respond with the IP address and port that gdbserver uses for
this MPI task. This is the information you will need later to connect gdb to the
correct remote target. You can repeat this step, with different MPI task
numbers, as often as you like:

> 2
MPI Rank 2: Connect to 172.30.255.85:7302
> 4
MPI Rank 4: Connect to 172.30.255.85:7304

You could also use the dump_proctable command here to list the connection
information for all MPI tasks, similar to its use from the MMCS console as
described previously.

3. When you have selected an MPI task and remembered its <ip-addr>:<port>
combination, press Enter again (with no task ID) to launch the application
under gdbserver control (Example 6-37).

Example 6-37 Launching the application under gdbserver control

>
<Dec 7 14:15:04> MPIRUN (Info) : Debug setup is complete.
<Dec 7 14:15:04> MPIRUN (Info) : Job 38156 state = ATTACH. Waiting...
<Dec 7 14:15:07> MPIRUN (Info) : Job Successfully attached!
<Dec 7 14:15:07> MPIRUN (Info) : Beginning BG/L job 38156 ...
<Dec 7 14:15:07> MPIRUN (Info) : Job attach command successful
202 Unfolding the IBM ̂Blue Gene Solution

<Dec 7 14:15:07> MPIRUN (Info) : Waiting for job to terminate...

4. If you need to prepare the application before it starts running, use gdb from
another login session and attach to gdbserver before pressing enter in
mpirun. Do all your preparatory work (like defining breakpoints), and when
you are ready to run, press Enter within the waiting mpirun session to start the
application.

It is also possible to attach to an already running program that has been started
through mpirun but without specifying -start_gdbserver. There are two ways to
do this:

1. Use MMCS and its debugjob command, as described previously.

2. Connect gdb to mpirun (instead of the application), and set some special
runtime variables that tell mpirun that a debug session should be started.

$ powerpc-bgl-linux-gnu-gdb example.rts
GNU gdb 5.3
Copyright 2002 Free Software Foundation, Inc.
...

(gdb) set MPIR_executable_path =
"/bgl/BlueLight/ppcfloor/linux-gnu/bin/powerpc-linux-gnu-gdb"

(gdb) set MPIR_server_arguments = "\0\0"
(gdb) set MPIR_being_debugged = 1
(gdb) c

To save some typing, the commands to set these variables can be stored in a
gdb command file, and parsed by using gdb -x. This is described in the next
section.

Attaching gdb to the remote debugger
Once gdbserver has been launched on the I/O nodes, you can start gdb on the
front-end node and connect to gdbserver. As usual, the name of the executable
to be debugged should be specified as an argument to gdb.

$ powerpc-bgl-linux-gnu-gdb example.rts
GNU gdb 5.3
Copyright 2002 Free Software Foundation, Inc.
...
(gdb)

If you get to the gdb prompt, use the target remote command of gdb to connect
to gdbserver, using the IP address and port number for the MPI task you want to
attach to. After this connect, you can use gdb as on any other platform:

(gdb) target remote 172.24.1.118:7300
Remote debugging using 172.24.1.118:7300
...
 Chapter 6. Porting applications 203

(gdb)... normal gdb usage from here ...
(gdb) detach
Ending remote debugging.
(gdb) quit

Note that if you quit gdb without detach, gdb will kill the application.

If you are running multiple debug sessions which always attach to the same MPI
task in the same MMCS block, it is handy to put the target command into a gdb
command file and invoke that via the gdb -x option, rather than retyping it every
time:

$ cat ./gdbrc
target remote 172.24.1.118:7300

$ powerpc-bgl-linux-gnu-gdb -x ./gdbrc example.rts
... normal gdb usage ...
(gdb) detach
(gdb) quit

If you name this file .gdbinit in your current working directory, it will automatically
be picked up by gdb without the need for a -x option.

6.5.4 TotalView
At the time of writing, the TotalView debugger by Etnus was announced, but not
yet available on Blue Gene/L.

Restriction:

The gdb run command does not work. Trying to restart the application from
the beginning using gdb consistently crashed the application when we tried it:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /auto/export-bglsim/hennecke/debug-case.rts
ÿÿá
Program received signal SIGSEGV, Segmentation fault.
0x00168fbc in chunk_free (ar_ptr=0x1d2cd0, p=0xffffe0f8) at malloc.c:3227
3227 malloc.c: No such file or directory.
 in malloc.c
(gdb)
204 Unfolding the IBM ̂Blue Gene Solution

6.5.5 Debugging parallel programs
When available, TotalView will be the debugger of choice to debug parallel
applications.

It is possible to have multiple gdb sessions attached to multiple MPI tasks, but
this is not very usable.

6.5.6 Tracking your memory usage
Running out of memory may cause a SIGSEGV or not, depending on the
circumstances. It is useful to know how much memory you actually use.

Calling sbrk(0) gives you the current limit of the data area.

You can use the -qdebug=function_trace compiler option to instrument function
entry and exit to monitor this. Check with the IBM development team for more
information.

A quick test shows that (with no significant program text) you can get to
ca. 508 MiB on a CN before running out of memory.

This is all applicable to serial programs too. For parallel programs it is especially
important that you check all arrays whose size depends on the number of tasks
(for example, MPI_COMM_SIZE). Try to eliminate that dependency, or distribute
the array across the tasks. Otherwise, this will cause memory overrun if the
number of tasks becomes higher and higher. Many data structures have been
designed with O(10) to O(100) tasks in mind, and memory consumption of
replicated arrays will explode for O(1000) or O(10000) tasks.

6.5.7 Core files and addr2line
Compile your program with -g as usual. If you get a core dump, the core file
actually is a plain text file that you can view with more or a text editor.

You can the use the Linux addr2line command on the front-end node, give it the
address found in the core file and the -g executable, and it will point you to the
source line where the problem occurred.

Tip: To save program text space on the compute node, save a copy of your
executable compiled with -g for later use with addr2line. Make another copy
of the executable and strip it. Use that stripped executable to run on the
compute node. If it core dumps and you want to use addr2line, just give
addr2line the unstripped executable.
 Chapter 6. Porting applications 205

Of course, this will not help if the exception was in a library external to your
program that has not been compiled with the -g flag. In that case, you can look at
the calling stack and find where it left your own code, at least.
206 Unfolding the IBM ̂Blue Gene Solution

Chapter 7. Massively parallel tuning

This chapter discusses various ways to make your application exploit the large
number of processors (up to 131072 CPUs) available on a BG/L system.

It also presents hints that may help you to determine, in certain situations, why
your application does not scale as expected.

7

© Copyright IBM Corp. 2005. All rights reserved. 207

7.1 Application mapping
The tasks assigned to the nodes in the Blue Gene/L system communicate with
each other by exchanging messages over a 3-dimensional mesh-based
interconnect. It is highly desirable to assign frequently communicating tasks to
Blue Gene/L nodes that are close to each other in order to reduce the delays that
arise due to multi-hop communications. As one node has only six neighbors, it
means that each node can directly exchange messages (no intermediate hops)
with the six adjacent nodes. In this section we examine the mapping-related
issues that arise within the context of the Blue Gene/L network, and describe
various methods to assign tasks to nodes that can result in improved system
performance.

7.1.1 Problem description
Application mapping deals with the assignment of tasks that belong to a parallel
program to nodes in a computer network. The goal is to find an assignment
which minimizes the completion time of a parallel program.

The mapping issues take on particular significance in the multidimensional
grid-based interconnects used in Blue Gene/L, since the communication costs
are not assumed to be uniform because several hops may be needed before a
message reaches its destination.

Latency in a Blue Gene/L network
A Blue Gene/L network can be configured as a torus or mesh. Figure 7-1 on
page 209 shows a torus configuration of 4x4x4 Blue Gene/L.
208 Unfolding the IBM ̂Blue Gene Solution

Figure 7-1 Torus configuration of a 4x4x4 Blue Gene/L network

Figure 7-2 presents the same network configured as a grid, where opposite faces
are not connected. The torus configuration shown in Figure 7-1 is for illustration
purposes only; the actual Blue Gene/L may not support torus connections for a
configuration as small as 64 Blue Gene/L nodes.

Figure 7-2 Grid configuration of a a 4x4x4 Blue Gene/L network

B

A

 Chapter 7. Massively parallel tuning 209

In mesh- and torus-type interconnects, messages can traverse more than one
hop to reach the destination. A hop is defined as the distance between two
neighboring nodes in the network. The shortest distance between two nodes in a
mesh or torus is also known as the Manhattan distance between the two nodes.
Manhattan distance is defined as the rectilinear route measured along parallels
to the X, Y, and Z axes. For example, the Manhattan distance between the two
nodes A and B in the mesh shown in Figure 7-2 is 2+1+2=5. Similarly, the
distance between alike-placed nodes in a torus network (shown in Figure 7-1 on
page 209) is 2+1+2=5.

The latency between two Blue Gene/L nodes with CPUs running at 700 MHz as
a function of their Manhattan distance is given by this formula:

One way Latency (μs) = 2.81 + .0993*Manhattan Distance

The formulas for diameter and average distances in mesh- and torus-type
networks are shown in Table 7-1. These two measures in a network signify the
maximum and average values the Manhattan distance can take in a network,
respectively.

From these parameters and the latency numbers, it is clear that the placement of
frequently communicating tasks farther apart will incur a performance penalty for
these tasks in the form of increased latency for the messages exchanged
between these nodes. Further, message traffic between these tasks placed
farther apart may have to cross more links and may, therefore, slow down
communication between other tasks running elsewhere in the network.

Table 7-1 Diameter and average distance in mesh and torus networks

Computation and communication times
Completion time for a parallel program has two components: computation time
and communication time. The completion time of the parallel application is the
maximum of the completion times of all the tasks in the parallel application. If this
completion time is greater than the parallel completion time, then this can have a
negative impact on the scalability of the parallel program.

Network Dimension
(nodes)

Diameter Average
distance

Mesh X,Y,Z (X+Y+Z-1) 1/2 * diameter

Torus X,Y,Z 1/2 * diameterX
2
---- Y

2
---- Z

2
---+ +
210 Unfolding the IBM ̂Blue Gene Solution

For parallel programs with a small number of tasks, it is feasible to enumerate all
possible assignments of the tasks to the nodes in a Blue Gene/L network and to
pick an assignment with the minimum completion time for the program.

For parallel applications with several hundreds or thousands of tasks, exhaustive
enumeration becomes infeasible very quickly and some sort of automated
methods of mapping application tasks to the processors in the network are
needed.

This section is organized as follows:

� In 7.1.2, “Mapping scenarios” on page 211, we illustrate the mapping problem
in a parallel computer with crossbar- and mesh-type interconnects.

� In 7.1.3, “Mapping file semantics in Blue Gene/L” on page 217, we describe
the facilities that are available in Blue Gene/L to map parallel tasks to Blue
Gene/L processors after the application designer decides upon a particular
mapping.

� In 7.1.4, “Automatic mapping methods” on page 220, we introduce the
automated methods to arrive at a mapping.

� In 7.1.5, “Manual mapping methods” on page 223, we illustrate how the
application designers can establish a very good mapping manually after
analyzing the communication patterns in the parallel application.

� In 7.1.6, “Mapping experiments” on page 226, we describe the results of
using several methods to map SAGE application to Blue Gene/L.

� In 7.1.7, “General guidelines for application mapping” on page 230, we
provide mapping guidelines to the developers who plan to run their parallel
applications on Blue Gene/L.

7.1.2 Mapping scenarios
One way to speed up the execution of a program is to split it into smaller
fragments and distribute them over several processors. These fragments can
then execute in parallel and communicate with each other as needed to solve a
global problem.

Note: The mapping techniques introduced in 7.1.4, “Automatic mapping
methods” on page 220 and 7.1.5, “Manual mapping methods” on page 223
are intended as a description of the current state of technology in application
mapping.

Currently there are no announced IBM products that make use of this
technology. IBM will determine whether to introduce products based on these
techniques at a later date.
 Chapter 7. Massively parallel tuning 211

Referring to Figure 7-3, a serial program A with a total computation requirement
of 100 wall clock time units is divided equally among four parallel program
components. If there are no other communication delays, the speed-up and the
efficiency of this setup is 100/25=4 and 4/4 = 100%. respectively.

Figure 7-3 Ideal speed-up and efficiency of a parallel program

Communication delays
In order to illustrate the mapping-related issues, we extend the ideal parallel
program introduced in Figure 7-3 to include communication between the tasks,
as shown in Figure 7-4 on page 214. Both the parallel application and the
distributed architecture are represented as graphs.

In the case of the parallel application, the vertices represent the tasks and the
edges represent the exchange of messages between the tasks. Omission of an
edge between a pair of tasks means that there is no direct interaction between
these two tasks. In the case of the computer network, the node represents the
processing element and the edge between a pair of nodes represents a direct
network connection between those nodes.

We assume that CPU speed is identical for all nodes, and that it takes the same
amount of time to transmit a fixed length message between a pair of directly
connected nodes using either the crossbar or mesh interconnects.

We define several measures that are used in our computation model and its
implementation on architectures using both crossbar and mesh interconnects.
The measures outlined are more complicated in real-world scenarios, but are
purposely simplified here for ease of exposition.

Serial Program Parallel Program

Assumptions:
noperfect load balancing
no communication delays

25252525

Serial Program Time: 100
Number of CPUs: 4
Parallel Time: 25
Speed-up: 100/25 = 4
Efficiency: 4/4 = 100%

100

Serial Program Parallel Program

Assumptions:
noperfect load balancing
no communication delays

25252525

Serial Program Time: 100
Number of CPUs: 4
Parallel Time: 25
Speed-up: 100/25 = 4
Efficiency: 4/4 = 100%

100

100 units of time to complete the serial program
212 Unfolding the IBM ̂Blue Gene Solution

Table 7-2 Parameters used in model descriptions

The crossbar
The crossbar switch model is assumed by the parallel programming community
while implementing solutions on parallel computers using multistage switched
networks such as the IBM High Performance Switch (HPS) and Myricom’s
Myrinet. The communication delays between different stages are of the order of
nanoseconds and do not seem to surface at the application program level.

In the crossbar model, it is assumed that the number of hops a message takes
between two nodes is fixed for all pairs of nodes. For simplicity, we assume that
the time it takes for a message to traverse on a crossbar switch is the same as
the time it takes for the message to traverse one hop in a mesh-based
interconnect.

VARIABLE DESCRIPTION

COMM(i,j) Message size in bytes sent from task i to task j

COMP(i) Computation time at task i

map(i) Processor assigned to task i

map(j) Processor assigned to task j

C(map(i),map(j)) The number of hops a message has to traverse between
processors assigned to tasks i and j

COST(i, j) Total message transmission cost to send messages between
tasks i and j:

CCOST(i) Total communication time at task i:

TCOST(i) Total completion time at task i:

Parallel job
completion time

Speed-up Serial completion time/Parallel completion time

Parallel Efficiency Speed-up/Number of CPUs used

map(j)))c((map(i),j)comm(i,j)cost(i, ×=

∑=
 j tasks all for

j)cost(i, ccost(i)

cost(i)comp(i)tcost(i) +=

(tcost(i))max time parallel
i tasks all for

=

 Chapter 7. Massively parallel tuning 213

The mesh
In Blue Gene/L, the compute nodes are laid out in a 3D-mesh/torus grid fashion.
When configured in 3D-torus fashion, each node has six neighboring nodes.
Adjacent nodes are directly connected, and messages between non-neighboring
nodes have to traverse other nodes to reach their destination. Hence, the time it
takes for a message to travel between a source and its destination is a function
of the number of hops the message has to travel to reach its destination.

Figure 7-4 illustrates the mapping of a simple parallel program we have been
using to a parallel computer with a crossbar switch. Sample values are given to
the matrices, C(i,j), COMM(i,j), MAP(i). From these, the COST(i,j), TCOST(i) and
the task with the maximum (parallel compute time + communication time) are
computed.

Figure 7-4 Application mapping in a distributed system using crossbar-type interconnect

Network
model

Parallel
Application
model

P0 P1

P3 P2

T0 T1

T3 T2

T0 T1

T3 T2

T0 T1

T3 T2

P0 P1

P3 P2

10112

11011

11100

01113

3210

10112

11011

11100

01113

3210

10102

01021

20200

01023

3210

10102

01021

20200

01023

3210

comm(i,j) = measure (e.g. bytes)
of information exchanged
between tasks Ti and Tj

C(I,j) = cost (in hops) of sending
message from processor i to j

3210map(i)

3210Task i

3210map(i)

3210Task i

)()()(cos

()(
 tasks all for

iccosticompitt

j)i,costiccost
j

+=

= ∑

3234ccost (i)

25252525comp(i)

28272829job(i)

3210Task i

3234ccost (i)

25252525comp(i)

28272829job(i)

3210Task i

1 41)11(1 count hop Average

85% 4.0 3.4

cpus of number up-speed efficiency

3.4 29 100

time parallel time serialup-speed

))(cos(max time parallel
 tasks all for

=÷+++=
=÷=
÷=

=÷=
÷=

== 29itt
i

F
ro

m
 p

ro
ce

ss
or

, P
i

To processor, Pj

F
ro

m
 T

as
k

T
i

To Task, Tj

10102

01021

20200

01023

3210

10102

01021

20200

01023

3210

)))(),((()(jmapimapcj)comm(i,icost ×=

F
ro

m
 T

as
k

T
i

To Task, Tj

Task assignment

A sample mapping
map(Ti) = processor assigned to task Ti
214 Unfolding the IBM ̂Blue Gene Solution

As shown in Figure 7-4, the task with the maximum (compute time and
communication time) of 29 is task 0. This results in a speed-up and efficiency of
3.4 and 86%, respectively.

In the case of the mesh-based networks, due to inter-processor communication,
the cost is not uniform and hence the tasks can incur non-uniform
communication costs if they are not mapped properly. The application and the
mesh models are introduced in Figure 7-5 on page 215.

Figure 7-5 Task and network model using Blue Gene/L network

Take a look at the following two sample scenarios. In Figure 7-6 on page 216, an
extremely inefficient mapping is used. This mapping results in an average hop
distance of 3 for messages to travel between tasks. The speed-up and efficiency
for this mapping are 2.5 and 65%, respectively. Communication time has gone
up from 4 units of time in the case of crossbar interconnect to 14 units of time.

Network
model

Parallel
Application model

T0 T1

T3 T2

T0 T1

T3 T2

C(I,j) = cost in hops of sending message from
processor Pi to Pj

0121232348

1012123237

2103214326

1230121235

2121012124

3212103213

2341230122

3232121011

4323212100

876543210

0121232348

1012123237

2103214326

1230121235

2121012124

3212103213

2341230122

3232121011

4323212100

876543210

F
ro

m
 p

ro
ce

ss
or

, P
i

To processor, Pj

P0

P6

P1

P3

P7

P4

P8

P2

P5

10102

01021

20200

01023

3210

10102

01021

20200

01023

3210

comm(i,j) = measure (e.g. bytes) of information exchanged
between tasks I and j

F
ro

m
 T

as
k

T
i

To Task, Tj
 Chapter 7. Massively parallel tuning 215

Figure 7-6 Mapping the tasks in mesh-based network - Scenario 1

In the second mapping scenario, presented in Figure 7-7 on page 217, the tasks
that exchange messages are mapped to the neighboring processors in the
network and the resulting speed-up and efficiency are the same as those
observed for the crossbar interconnect: 3.4 and 85%, respectively. These
examples clearly illustrate that ignoring the locality of communications in the
parallel program can result in poor performance of the application and inefficient
use of costly resources.

6180map(i)

3210Task i

6180map(i)

3210Task i

)(cos)()(cos

()(
 tasks all for

itcicompitt

j)i,costiccost
j

+=

= ∑

851114ccost (i)

25252525compi(i)

33303639tcost(i)

3210Task i

851114ccost (i)

25252525compi(i)

33303639tcost(i)

3210Task i

3 4)3(4 count hop Average

65% 4.0 2.6 efficiency

2.6 39 100

time parallel time serialup-speed

))(cos(max time parallel
 tasks all for

=÷+++=
=÷=
=÷=
÷=

==

32

39itt
i

20302

03081

60800

02063

3210

20302

03081

60800

02063

3210

)))(),((()(jmapimapcj)comm(i,icost ×=

F
ro

m
 T

as
k

T
i

To Task, Tj

P0

P6

P1

P3

P7

P4

P8

P2

P5

T1

T3

)))(),(((count hop ji tmaptmapc=

2-3-2

-3-41

3-4-0

-2-33

3210

2-3-2

-3-41

3-4-0

-2-33

3210

To task Tj

T0
T2

10102

01021

20200

01023

3210

10102

01021

20200

01023

3210

comm(i,j)

F
ro

m
 T

as
k

T
i

To Task, Tj

)))(),(((count hop ji tmaptmapc=

F
ro

m
 ta

sk
 T

i

2-3-2

-3-41

3-4-0

-2-33

3210

2-3-2

-3-41

3-4-0

-2-33

3210

To task Tj

A sample mapping
map(Ti) = processor assigned to task Ti
216 Unfolding the IBM ̂Blue Gene Solution

Figure 7-7 Mapping the tasks in mesh-based network - Scenario 2

7.1.3 Mapping file semantics in Blue Gene/L
In Blue Gene/L, users interact with Blue Gene/L by submitting jobs using the
following system facilities:

� mpirun
� A job batch queueing system

The mpirun command can be used to specify the mapping of an application’s
tasks at the time of job submission. In a production environment, a batch
queueing system is used to submit jobs and the user interfaces to these
queueing systems can vary widely. Refer to the documentation of these products
for information about how to specify mapping-related information to these
products.

A sample mapping
map(Ti) = processor assigned to task Ti

7110map (Ti)

3210task Ti

7110map (Ti)

3210task Ti

)(cos)()(cos

()(
 tasks all for

itcicompitt

j)i,costiccost
j

+=

= ∑

3234ccost (i)

25252525compi(i)

28272829tcost(i)

3210Task i

3234ccost (i)

25252525compi(i)

28272829tcost(i)

3210Task i

1 41)11(1 count hop Average

85% 4.0 3.4 efficiency

3.4 29 100

time parallel time serialup-speed

))(cos(max time parallel
 tasks all for

=÷+++=
=÷=
=÷=
÷=

== 29itt
i

F
ro

m
 ta

sk
 T

i

P0

P6

P1

P3

P7

P4

P8

P2

P5

T0
T1

T3 T2

10112

11011

11100

01113

3210

10112

11011

11100

01113

3210

To task Tj

10102

01021

20200

01023

3210

10102

01021

20200

01023

3210

)))(),((()(jmapimapcj)comm(i,icost ×=

To Task, Tj

F
ro

m
 ta

sk
 T

i

10102

01021

20200

01023

3210

10102

01021

20200

01023

3210

comm(i,j)

)))(),(((count hop i jtmaptmapc=

F
ro

m
 ta

sk
 T

i

10112

11011

11100

01113

3210

10112

11011

11100

01113

3210

To task Tj

F
ro

m
 ta

sk
 T

i

Task assignment

)))(),(((count hop ji tmaptmapc=
 Chapter 7. Massively parallel tuning 217

mpirun
The mpirun parameters that are relevant to application mapping are shown in
Table 7-3.

Table 7-3 :Application mapping in Blue Gene/L

These parameters are used to specify to the system how to assign the tasks to
processors. The Blue Gene/L partition allocated to the parallel application has a
shape expressed as XxYxZ, where XYZ refers to the sizes of the partition’s X, Y,
and Z axes, respectively.

For example, 16x8x8 refers to a partition of size 1024 nodes. Each of the
compute nodes is given an absolute coordinate point starting from (0,0,0) and
going all the way to (15,7,7).

The shape can either be user-specified (by giving a value to the shape
parameter), or you can let the system choose the shape. If the partition is booted
in coprocessor (CO) mode, only one processor per node is available for
allocation, whereas if the partition is booted under virtual node (VN) mode, then
both processors in the compute node are available for allocation.

After the partition shape is determined, the assignment of tasks to the processors
is accomplished through the mapfile parameter.

Parameter Description

np Number of tasks

partition Name of partition (optional)

mapfile Method of mapping; one the following values (optional)
� XYZT (default)
� TXYZ
� Absolute path of mapping file containing an entry for each of

the np tasks using the following format:
– X Y Z T

shape Shape of job in compute nodes; format is XxYxZ

connect The connection type of the required partition, choices:
TORUS or MESH (default=MESH)

mode Execution node mode of the required partition:
� CO (coprocessor) (default)
� VN (virtual node)

exe Full path of the parallel application executable
218 Unfolding the IBM ̂Blue Gene Solution

There are three ways to specify mapping to Blue Gene/L:

� XYZT
� TXYZ
� mapfile

XYZT and TXYZ are examples of a specification to indicate to the system to start
permuting the ordinate presented positionally from left to right. The letter T
represents the placement of a task on one of the two CPUs in a node when the
Blue Gene/L system is booted in virtual node mode.

In virtual node mode, the letter T takes values of 0 or 1. In coprocessor mode it
takes single value of 0. Any permutation of X,Y,Z is allowed. Some examples are
XYZT, TXZY, and so forth. The letter T can take only the beginning and end
positions of the mapping term.

Table 7-4 provides examples of the usage of pre-defined mapping designations:
XYZT and TXYZ. It also highlights some of the inflexibilities that can result while
the tasks are mapped using these designations.

For example, consider the situation where a user requests 16 CPUs, with the
intention of using this as a 4x2x2 mesh in coprocessor mode using the XYZT
allocation scheme and the smallest free partition available is a midplane of shape
8x8x8. The system allocates the midplane to the job and furthermore, the system
configures the allocation as a mesh of size 8x2 instead of 4x2x2!

Table 7-4 Pre-defined mappings

Note: When the mapping is specified by a text file the only notation supported
is XYZT.

Mapfile
(pre-defined)

Shape Partition
allocated

Mode Nodes CPUs Grid and CPUs
allocated

XYZT 4x2x2 8x8x8 CO 512 512 8x2
(0000,1000,2000,3000
4000,5000,6000,7000
1000,1100,1200,1300,
1400,1500,1600,1700)

TXYZ 4x2x2 8x8x8 CO 512 512 8x2
(0000,1000,2000,3000
4000,5000,6000,7000
1000,1100,1200,1300,
1400,1500,1600,1700)
 Chapter 7. Massively parallel tuning 219

Blue Gene/L provides an additional mapping facility, giving users full flexibility of
the placement, where users can designate exact placements of tasks on the
compute nodes in a file. In this file, there is one entry for each task assignment
and the designation follows the XYZT format as indicated below:

1 3 4 0

The entry instructs the system to place the task corresponding to this line in the
map file on the first CPU of a compute node whose coordinates are (1,3,4); see
Table 7-5. The number of lines in the mapfile should be equal to the number of
tasks in the parallel program. There is a one-to-one mapping of line number in
the mapfile and task number in the parallel program.

Table 7-5 Using custom mapping files

7.1.4 Automatic mapping methods
For parallel applications that contain a large number of tasks, manual methods of
analyzing traffic patterns and evaluating potential mapping scenarios are not

XYZT 4x2x2 8x8x8 VN 512 1024 8x2
(0000,1000,2000,3000
4000,5000,6000,7000
1000,1100,1200,1300,
1400,1500,1600,1700)

TXYZ 4x2x2 8x8x8 VN 512 1024 8x1
(0000,0001,1000,1001,
2000,2001,3000,3001
4000,4001,5000,5001,
6000,6001,7000,7001)

Mapfile
(pre-defined)

Shape Partition
allocated

Mode Nodes CPUs Grid and CPUs
allocated

Mapfile
(custom)

Shape Partition
allocated

Mode Nodes CPUs Grid and
CPUs
allocated

0000,0010,0100,0110,
1000,1010,1100,1110
2000,2010,2100,2110,
3000,3010,3100,3110

4x2x2 8x8x8 CO 512 512 4x2x2

0000,0001,0010,0011
0100,0101,0110,0111
1000,1001,1010,1011
1100,1101,1110,1111

4x2x2 8x8x8 VN 512 512 2x2x2
220 Unfolding the IBM ̂Blue Gene Solution

feasible and some automated mapping facilities are needed. In this section, we
describe schemes that can be useful in mapping the tasks to Blue Gene/L
processors. These methods are:

� Default allocation
� Random allocation
� Heuristic methods

Default allocation
In 7.1.3, “Mapping file semantics in Blue Gene/L” on page 217, we described the
facilities provided by the Blue Gene/L system to map applications onto the Blue
Gene/L system. These default mappings are recommended as a starting point
when no information about inter-task communication in a parallel program is
available. Information gathered about inter-task message patterns can then be
used in either heuristic or optimal methods to further improve task assignment.

Random allocation
In the case of a parallel applications where either the message traffic patterns
are not known a priori, or the message patterns change dynamically during job
execution, a simple default assignment using the XYZT or random allocation of
tasks to processors should suffice. In both cases, the average hop distances
messages have to travel between tasks are very similar.

As shown in “Mapping using SAGE” on page 224, when the message traffic
patterns are known, random placement can be very expensive compared to the
heuristic techniques. Heuristic techniques attempt to use the information about
the inter-task message patterns and can produce an assignment which
preserves the locality communication between neighboring tasks in the parallel
application.

Mapping based on heuristic methods
For an n node system, the possible mappings which have to be searched for an
optimal layout are O(n!). Clearly, it is not practical to enumerate all possible
mappings. Methods to find optimal mappings can take a very long time to be
useful. Heuristic methods, although provably not optimal in nature, provide a fast
way to improve an existing solution.

Several heuristic methods have been proposed in the past to improve task
assignment in large computer networks. In this section, we describe recent
experiences with solving task assignment on Blue Gene/L system using heuristic
methods. The first method is a simple heuristic that is very fast and generates
good mappings when compared to random mappings. Then a more
sophisticated method using the Simulated Annealing technique is introduced.
 Chapter 7. Massively parallel tuning 221

Mapping based on a simple heuristic
Since the goal is to come up with a mapping that improves the cost function
introduced in “Communication delays” on page 212, it is possible to come up with
any number of heuristic algorithms to devise a solution from scratch or refine an
exiting solution. Here is a simple heuristic that is used in the experiments and is
labeled as “heuristic” in results presented later in this section.

A heuristic map is described by the following algorithm:

1. Let us assume the parallel program is divided into N tasks and is to be
assigned to P processors on Blue Gene/L.

2. Map task i =1 to an arbitrary location (x, y, z).

3. Map all domains with which task i = 1 communicates either to location (x, y, z)
or to its neighboring locations on the Blue Gene/L torus, while satisfying the
constraint that only one task can be assigned to a processor.

4. Next, map task i = 2 (if it is not yet mapped) to an arbitrary location (x0; y0;
z0) and the unmapped tasks with which it communicates either to the same
node or to a neighboring node on the torus while satisfying the constraint that
only one task can be allocated to a processor.

5. Repeat this last step for the remaining tasks i = 3; 4; :::;N.

This heuristic can be made more sophisticated by taking into account the volume
of communication between tasks already allocated the remaining tasks. For
example, in step 4, it is beneficial to map first those tasks with the greatest
communication volume to already mapped tasks within their close proximity,
rather than simply mapping in task rank order.

The output is in the format of the mapping file described in “Mapping file
semantics in Blue Gene/L” on page 236.

Mapping based on simulated annealing
An algorithm that can be used to find an optimal mapping of parallel tasks to Blue
Gene/L processors is presented in the article “Optimizing Task Layout on the
Blue Gene/L Supercomputer”, Bhanot, et al, IBM September, 2004. This
algorithm is used to minimize the communication delays for the entire parallel
job. This approach uses a Simulated Annealing algorithm which takes into
account the inter-task communication requirements and the inter-processor
communication delays, and generates an optimal assignment of tasks for Blue
Gene/L processors. The output of this algorithm is in the format of the mapping
file described in 7.1.3, “Mapping file semantics in Blue Gene/L” on page 217.
222 Unfolding the IBM ̂Blue Gene Solution

The cost function the proposed algorithm attempts to minimize is given by the
following formula:

where:

COMM(i,j) Message in bytes sent from task i to task j
map(i) Processor assigned to task i
map(j) Processor assigned to task j
C(map(i), map(j)) Inter-processor message transmission cost between

processor assigned to task, i and processor assigned
to task, j

This procedure is called Simulated Annealing because it is analogous to the
annealing processing in metallurgy, where metals are first heated and then
slowly cooled to remove impurities.

Simulated annealing is an iterative method which repeatedly attempts to improve
a given configuration by making random changes. To seed the process, an initial
configuration must be set up. This can be selected at random or through a simple
heuristic procedure such as the one described in “Mapping based on a simple
heuristic” on page 222.

7.1.5 Manual mapping methods
In some situations, the application designer may have knowledge about the
communication behavior of the parallel application, but it may not be easily
modeled for solving by automated mapping techniques. In these situations the
mapping problem is solved through some manual analysis and the mapping is
described to the Blue Gene/L system through the mapfile parameter.

For example, the application may exhibit different communication patterns during
different stages of the program, and the application designer may decide to
manually remap computations during the course of the execution of the parallel
application.

In this section, we describe practical situations where manual analysis resulted in
significantly improved performance over some of the automated techniques
described in 7.1.4, “Automatic mapping methods” on page 220.

∑ ×=
 j i, tasks all for

map(j))c(map(i),j)comm(i, F
 Chapter 7. Massively parallel tuning 223

Mapping using SAGE
SAGE is an Adaptive Grid Eulerian hydrodynamics application from Science
Applications International Corporation1. In this section, we describe our
experiences with the manual methods used to map SAGE onto the Blue Gene/L
system and how its performance compares with simple heuristics-based and
more complex mapping methods. Some of the work reported here was done in a
prior investigation2.

Domain decomposition in SAGE
SAGE uses a regular Cartesian grid, where cells are grouped into blocks, with
each block containing 8 cells in a 2x2x2 group. Blocks are distributed in (x,y,z)
order forming a 3-dimensional grid of the input domain. For load balancing
purposes, each of the tasks of a parallel implementation of SAGE allocated the
same number of blocks.

For a small number of tasks, a simple decomposition results in the allocation of a
slab of the application domain to each of the tasks. As shown in Figure 7-8 on
page 225-A, an input domain of 32768 blocks (each block is 8 cells) is partitioned
into 8 parallel partitions each containing 4096 blocks. Each partition would have
an allocation of 4096 blocks, a slab of 4 layers (sheets) of blocks.

For a large number of tasks, each sheet of blocks is shared by more than one
MPI task. For example, at 512 tasks the total number of blocks =512*4096, which
makes a cube with 128 blocks on each edge. Each task gets 4096 blocks, so the
local domain will be a rectangular region with dimensions of 128x32x1 in units of
blocks; and exactly 4 tasks share each 128x128 sheet of blocks. This is
illustrated in Figure 7-8 on page 225-B.

1 For more details about SAGE, refer to D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, M. Gittings,“Predictive Performance and Scalability Modeling of a Large-Scale
Application”, Proceedings of the 2001 ACM/IEEE Conference on Supercomputing.
2 See “An Example of Mapping on Blue Gene/L Using SAGE”, by Amy Henning and Bob Walkup,
available from IBM.
224 Unfolding the IBM ̂Blue Gene Solution

Figure 7-8 Sample decompositions in SAGE

Once the logical grouping of input domain into subdomains is accomplished, the
next step is to map this logical task set onto a Blue Gene/L architecture. Now, we
describe a mapping that was used in a recent study to map the slab and strip
decompositions onto a Blue Gene/L system.

Application mapping in SAGE
In the case of slab decomposition, boundary exchange involves communication
with neighbors that are +/-1 in MPI task order. For a Blue Gene/L configured as a
mesh, an example of a mapping with good locality would be a line that winds
back and forth in the x-dimension, making a space-filling curve over the mesh
network.

This ensures that all boundary exchange is to the nearest neighbors on the
mesh. A disadvantage of this simple mapping is that only about one third of the
links are used for communication. In principle, you could use a more complex
mapping that gives up some locality in order to increase link utilization.

However, the slab decomposition is limited to small task counts with a modest
communication requirement in the present example, and so a simple space filling
curve is a good solution.

As the task count increases, more than one task shares each sheet of blocks,
and the communication pattern becomes more complex. For the 512-CPU

A. B.
SAGE slab decomposition for Decomposition for 512 MPI using
8 MPI tasks, using 32768 cells 32768 cells per task. Each
per task. Each task has a local task has a local domain of
domain of 32x32x4 blocks. 128x32x1 blocks.
 Chapter 7. Massively parallel tuning 225

example shown in Figure 7-8 on page 225-B, the most important communication
step would be boundary exchange with tasks that are +/-4 in MPI task order.

To come up with a mapping file for this case, you could take a small square for a
given x-coordinate on the torus, using the four points {(x,y,z), (x,y,z+1),
(x,y+1,z+1), (x, y+1,z)}, and replicate this four-point patch in the x direction,
winding through the torus network in a space-filling curve.

For 512 CPUs, this mapping has very good locality: the maximum distance
between communicating pairs is 2 hops in torus coordinates, and the average
distance is 1.07. The first few lines of the mapping file implementing four-point
patch are listed below. For a description of the mapping file layout, see 7.1.3,
“Mapping file semantics in Blue Gene/L” on page 217.

0 0 0 0
0 0 1 0
0 1 1 0
0 1 0 0
1 0 0 0
1 0 1 0
1 1 1 0
1 1 0 0

In the case of 2048 CPUs configured as a torus, a reasonably large problem can
be mapped, with cells per CPU = 65536. The total number of blocks would be
2048*65536/8 = 16M = 256**3; so there would be a cube of blocks with 256
blocks along each edge, and 8 MPI tasks would share each sheet of blocks
(8*256 = 2048). In this case, the communication pattern should be +/-1, and +/-8
in MPI rank; so the default XYZT mapping should be very good on an 8x8x32
torus. A sample mapfile containing the folding scheme described here is:

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
0 1 0 0
1 1 0 0
2 1 0 0

7.1.6 Mapping experiments
On the same 512 CPU and 2048 CPU Blue Gene/L systems used in these
experiments, in addition to the manual mapping scheme (labeled as the folding
method), the following mapping methods were used for comparison. The results
226 Unfolding the IBM ̂Blue Gene Solution

are shown in Table 7-6 and Figure 7-9 on page 228 for a 512-CPU system
configuration, and in Table 7-8 on page 229 and Figure 7-10 on page 230 for a
2048-CPU system.

� Random
� Default (XYZT)
� Heuristic
� Annealing

Table 7-6 Evaluating different mapping schemes on SAGE performance on 512 CPU - Blue Gene/L

As expected, the TORUS network resulted in better performance for all mapping
schemes on both 512-CPU and 2048-CPU configurations.

In the 512-CPU run, the random method resulted in the worst performance, both
in the case of mesh and torus networks. The extra links in the torus configuration
seem to benefit the random mapping more significantly than others. On the
absolute performance scale, the simulated annealing and the heuristic methods
resulted in slightly better performance than the manual folding scheme when a
mesh-based network connectivity is used. The folding scheme seems to have
some advantage when a torus network is used on the 512-CPU system.

The additional links in the torus configuration gave a much-needed boost to the
random method, making it the most improving candidate. The improvement for
the other methods is not as dramatic, since they all tend to preserve locality and
are already performing much better than the random mapping, and further,
improvement is not as significant.

Performance of different mapping schemes using SAGE on Blue Gene/L
Number of CPUS: 512, 8x8x8, Co-processor mode, Number of blocks/task = 32768
(Larger values are better for cells/sec/CPU and lower values are better for time measurement)

Mapping
method

Torus Mesh

Cells/
sec/CPU

Comm
Time

Total
Time

Cells/
sec/CPU

Comm
Time

Total
Time

Random 4507 226 753 3670 407 899

Default 4401 258 751 3885 366 850

Heuristic 5181 149 639 4912 184 673

Annealing 5192 151 638 4882 188 678

Folding 4989 160 663 5085 160 651
 Chapter 7. Massively parallel tuning 227

Figure 7-9 Results of different mapping schemes in SAGE on a 512-CPU Blue Gene/L

In the case of 2048-CPU Blue Gene/L, configured as 8x8x32 MESH, since one
of the torus dimensions is very large, the random mapping took a big hit in
performance, as shown in Table 7-8 and Figure 7-10.

One reason for the random mapping being significantly worse than others is that
the average hop distance has increased significantly, as indicated by the
average distance between tasks for each of the mapping methods. This is
illustrated in Table 7-7.

Table 7-7 Average hop distance measured in sample maps created for 8x8x32 torus

Referring to Table 7-8 and Figure 7-10, the manual mapping using the folding
scheme was better than most of the mapping methods used in these

Mapping method Average hops

Folding 1.00

Heuristic 1.26

Annealing 1.54

Random 12.12

Performance of Mapping Methods on Blue Gene/L
using SAGE

Number of CPUs: 2048, Number of blcoks/cpu: 65536

0

2000

4000

6000

Random Default Heuristic Annealing Folding
Mapping Method

P
ro

ce
ss

in
g

ra
te

: c
el

ls
/s

ec
/C

P
U

TORUS MESH
228 Unfolding the IBM ̂Blue Gene Solution

experiments. The default mapping did not perform well in mesh since the lack of
torus connections did not preserve the locality. Once implemented on torus, the
the performance of the default mapping is very close to that of the folding
scheme.

Table 7-8 Evaluating of different mapping schemes on SAGE performance on 2048 CPU - Blue Gene/L

Heuristic methods are very inexpensive to implement and give assignments
whose performance is within a small percentage from the more time-consuming
and complex schemes such as annealing. Heuristic schemes may be sufficient
to map several classes of real-life applications.

Performance of different mapping schemes using SAGE on Blue Gene/L
Number of CPUS: 2048, 8x8x,32, Co-processor mode, Number of blocks/task = 65536
(Larger values are better for cells/sec/CPU and lower values are better for time measurements)

Mapping
method

Torus Mesh

Cells/
sec/CPU

Comm
Time

Total
Time

Cells/
sec/CPU

Comm
Time

Total
Time

Random 2512 1590 2625 1436 3547 4580

Default 5054 287 1312 2712 1390 2418

Heuristic 4455 419 1445 4101 588 1617

Annealing 4402 477 1505 3971 621 1657

Folding 5047 287 1314 5042 287 1315
 Chapter 7. Massively parallel tuning 229

Figure 7-10 Results of different mapping schemes in SAGE on a 2048 CPU Blue
Gene/L

7.1.7 General guidelines for application mapping
From the preceding discussion, we can say that what matters most in mapping
applications to Blue Gene/L system is: locality, locality, locality. As explained in
“Mapping using SAGE” on page 224, ignoring the locality of communications in
communication-intensive applications can result in a heavy penalty to
performance. In this section, we provide general guidelines to application
mapping.

� Collect information about the intertask communication requirements (such as
the byte count and message count) and the inter-processor communication
details (such as connectivity, and latency of the network in the Blue Gene/L
system).

� While the network parameters are fixed and easy to obtain, it may not be that
easy to establish the intertask communication patterns. If it is not possible to
establish the intertask message pattern, a simple default mapping such as
XYZT or TXYZ or a random allocation should be sufficient.

� The minimal amount of information that would be needed by any of the
heuristic methods is the intertask communication connectivity graph for
parallel tasks. If more information, such as the number of bytes transmitted

Performance of Mapping Methods on Blue Gene/L
using SAGE

Number of CPUs: 512, Number of blcoks/cpu: 32768

0

2000

4000

6000

Random Default Heuristic Annealing Folding

Mapping Method

P
ro

ce
ss

in
g

ra
te

:
ce

lls
/s

ec
/C

P
U

TORUS MESH
230 Unfolding the IBM ̂Blue Gene Solution

and the frequency of communication is available, then mapping methods
similar to the ones described in 7.1.4, “Automatic mapping methods” on
page 220 can produce better mappings.

� Simple heuristic-based mapping methods can result in significant
improvement over either random or default mapping schemes. Further
refinement may need more complex and costly methods.

Sometimes, as illustrated in “Mapping using SAGE” on page 224, analysts who
are familiar with the communication patterns of an application may be able to
spot a good mapping, which will be very hard to improve further using the
heuristic methods.

7.1.8 MPI topologies and Cartesian communicators
The previously described methods of explicitly mapping MPI tasks to torus
coordinates through a mapfile are external to the application. They can help to
optimize communication performance by studying MPI traces of running
applications, and then adequately remapping the tasks on the torus for
subsequent runs.

However, they ignore the fact that the application itself may have inherent
topological characteristics that can be expressed by MPI constructs. Those
could be exploited by the MPI runtime system without the need for additional
(manual or automatic) mapping. In this section we discuss the techniques that
can be used inside the application to express such properties.

The MPI topologies framework
Chapter 6 of the MPI 1.1 standard (MPI - A Message Passing Interface
Standard. Message Passing Interface Forum. June 12, 1995.) covers MPI
topologies. This is a seldom used part of MPI, both because its use requires
some initial learning curve, and because most current parallel computers have
crossbar switches which are less susceptible to task placement than a torus
topology.

The idea underlying the MPI topologies framework is to attach some knowledge
of the topology of the application’s communication patterns to an MPI
communicator. To achieve this, MPI 1.1 defines functions that can create a new
communicator by using an existing communicator (typically
MPI_COMM_WORLD) and parameters describing the desired topology as input.
There are two classes of functions, one for general graphs and a second one for
 Chapter 7. Massively parallel tuning 231

Cartesian topologies. Here we only discuss the Cartesian case, for the following
reasons:

� Many scientific/technical applications naturally map to some Cartesian space,
while relatively few applications need general graphs to express their
communication patterns.

� The torus network of the Blue Gene/L system is Cartesian.

� The Blue Gene/L MPI library only provides optimized functions for Cartesian
topologies (a direct consequence of the preceding).

In addition to the creation of a Cartesian communicator, MPI also provides
functions which inquire the topology information attached to a communicator,
and conversion routines to translate between the Cartesian coordinates and the
flat MPI rank. Finally, similar to MPI_Comm_Split() which can be used to
partition a non-topological communicator, MPI_Cart_Sub() can be used to
partition a Cartesian communicator into lower-dimensional Cartesian subgrids.

Using Cartesian communicators has several advantages:

� The MPI library can automatically optimize the placement of tasks on the
torus, based on the topology information attached to the Cartesian
communicator.

� Many communication patterns can be expressed more elegantly by using
Cartesian coordinates than by using the flat MPI rank and some hand-crafted
indexing scheme.

� Using special communicators (for example, rows on the torus), collective
communications across such a communicator may exploit BG/L-specific
hardware support (like multicasts along a torus axis) which would otherwise
not be easily possible.

At the time of writing, the MPI library provides optimized MPI topology support
within the following limits:

� The communicator used as the input communicator to MPI_Cart_Create()
must represent a rectangular part of the torus network.

Note: For completeness, the Blue Gene/L MPI library provides all MPI
topology functions, including those for graphs. But the graph-related functions
do not actually perform any optimization. Starting with BG/L driver level 280,
some support for optimization of Cartesian communicators has been
introduced and this section is based on a preliminary version of that MPI
library.
232 Unfolding the IBM ̂Blue Gene Solution

� One- to three-dimensional Cartesian topologies are supported, both with
communication coprocessor mode and with virtual node mode.

� Four-dimensional Cartesian topologies are only supported in virtual node
mode, and one of the four dimensions must have size two.

In Example 7-1 we show a small MPI program that creates a Cartesian
communicator of size 7x3. The input to MPI_Cart_create() is an existing
communicator (here we use MPI_COMM_WORLD), the number of dimensions
of the Cartesian grid ndims, the extents of the Cartesian grid in a vector dims[], a
boolean vector periods[] specifying if the Cartesian grid is periodic (for each of
its dimensions), and a Boolean value reorder which, when true, allows the
function to reorder the ranks of the tasks to better match the physical topology.
The output is a new communicator, comm_cart.

The program prints the old and new MPI ranks as well as the Cartesian (virtual)
coordinates. Using the BG/L personality structure described in B.2, “Personality
data in bglpersonality.h” on page 333, we also print the torus (physical)
coordinates and the location strings of the nodes.

Example 7-1 Cartesian communicator creation

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include <bglpersonality.h>

int main (int argc, char **argv)
{
 int world_size, world_rank, cart_size, cart_rank;
 int ndims, reorder, rc;
 int dims[2], periods[2], coords[2];
 MPI_Comm cart_comm;
 char location[BGLPERSONALITY_MAX_LOCATION];
 BGLPersonality p;

 rc=MPI_Init(&argc, &argv);
 rc=MPI_Comm_size(MPI_COMM_WORLD, &world_size);
 rc=MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
 printf("W: %04i/%04i ", world_rank, world_size);

Tip: Using MPI_COMM_WORLD and a suitable mpirun -shape XxYxZ
invocation is normally sufficient to satisfy this requirement on BG/L.

Note: Higher dimensional topologies are accepted, but nothing special will
happen with respect to runtime mapping or reordering of the tasks.
 Chapter 7. Massively parallel tuning 233

ndims=2; dims[0]=7; dims[1]=3; periods[0]=1; periods[1]=1; reorder=1;
rc=MPI_Cart_create(MPI_COMM_WORLD, ndims,dims,periods,reorder, &cart_comm);

 if(cart_comm != MPI_COMM_NULL) {
 rc=MPI_Comm_size(cart_comm, &cart_size);
 rc=MPI_Comm_rank(cart_comm, &cart_rank);
 rc=MPI_Cart_coords(cart_comm, cart_rank, ndims, coords);
 printf("C: %04i/%04i <%02i,%02i> ",
 cart_rank, cart_size, coords[0], coords[1]);
 } else {
 printf("C: NULL/NULL <--,--> ");
 }

 rts_get_personality(&p, sizeof(p));
 BGLPersonality_getLocationString(&p, location);
 printf("T: <%02i,%02i,%02i>/<%02i,%02i,%02i> L: %s\n",

BGLPersonality_xCoord(&p),
BGLPersonality_yCoord(&p),
BGLPersonality_zCoord(&p),
BGLPersonality_xSize(&p),
BGLPersonality_ySize(&p),
BGLPersonality_zSize(&p),

 location);

 MPI_Finalize();
 exit(0);
}

Running this program on a single 32-way node card in CO mode (which always
has the physical topology 4x4x2) results in the output shown in Example 7-2.
Note that when the Cartesian grid is smaller than the input communicator, some
tasks return MPI_COMM_NULL as the new communicator. This is similar to the
behavior of MPI_Comm_split().

Example 7-2 Mapping a 7x3 mesh onto a 4x4x2 nodecard

W: 0000/0032 C: 0000/0021 <00,00> T: <00,00,00>/<04,04,02> L: R00-M0-Ne-C:J16-U01
W: 0001/0032 C: 0001/0021 <00,01> T: <01,00,00>/<04,04,02> L: R00-M0-Ne-C:J12-U01
W: 0002/0032 C: 0002/0021 <00,02> T: <02,00,00>/<04,04,02> L: R00-M0-Ne-C:J08-U01
W: 0003/0032 C: NULL/NULL <--,--> T: <03,00,00>/<04,04,02> L: R00-M0-Ne-C:J04-U01
W: 0004/0032 C: 0003/0021 <01,00> T: <00,01,00>/<04,04,02> L: R00-M0-Ne-C:J16-U11
W: 0005/0032 C: 0004/0021 <01,01> T: <01,01,00>/<04,04,02> L: R00-M0-Ne-C:J12-U11
W: 0006/0032 C: 0005/0021 <01,02> T: <02,01,00>/<04,04,02> L: R00-M0-Ne-C:J08-U11
W: 0007/0032 C: NULL/NULL <--,--> T: <03,01,00>/<04,04,02> L: R00-M0-Ne-C:J04-U11
W: 0008/0032 C: 0006/0021 <02,00> T: <00,02,00>/<04,04,02> L: R00-M0-Ne-C:J17-U01
W: 0009/0032 C: 0007/0021 <02,01> T: <01,02,00>/<04,04,02> L: R00-M0-Ne-C:J13-U01
W: 0010/0032 C: 0008/0021 <02,02> T: <02,02,00>/<04,04,02> L: R00-M0-Ne-C:J09-U01
W: 0011/0032 C: NULL/NULL <--,--> T: <03,02,00>/<04,04,02> L: R00-M0-Ne-C:J05-U01
W: 0012/0032 C: 0009/0021 <03,00> T: <00,03,00>/<04,04,02> L: R00-M0-Ne-C:J17-U11
W: 0013/0032 C: 0010/0021 <03,01> T: <01,03,00>/<04,04,02> L: R00-M0-Ne-C:J13-U11
W: 0014/0032 C: 0011/0021 <03,02> T: <02,03,00>/<04,04,02> L: R00-M0-Ne-C:J09-U11
W: 0015/0032 C: NULL/NULL <--,--> T: <03,03,00>/<04,04,02> L: R00-M0-Ne-C:J05-U11
W: 0016/0032 C: NULL/NULL <--,--> T: <00,00,01>/<04,04,02> L: R00-M0-Ne-C:J14-U01
234 Unfolding the IBM ̂Blue Gene Solution

W: 0017/0032 C: NULL/NULL <--,--> T: <01,00,01>/<04,04,02> L: R00-M0-Ne-C:J10-U01
W: 0018/0032 C: NULL/NULL <--,--> T: <02,00,01>/<04,04,02> L: R00-M0-Ne-C:J06-U01
W: 0019/0032 C: NULL/NULL <--,--> T: <03,00,01>/<04,04,02> L: R00-M0-Ne-C:J02-U01
W: 0020/0032 C: 0018/0021 <06,00> T: <00,01,01>/<04,04,02> L: R00-M0-Ne-C:J14-U11
W: 0021/0032 C: 0019/0021 <06,01> T: <01,01,01>/<04,04,02> L: R00-M0-Ne-C:J10-U11
W: 0022/0032 C: 0020/0021 <06,02> T: <02,01,01>/<04,04,02> L: R00-M0-Ne-C:J06-U11
W: 0023/0032 C: NULL/NULL <--,--> T: <03,01,01>/<04,04,02> L: R00-M0-Ne-C:J02-U11
W: 0024/0032 C: 0015/0021 <05,00> T: <00,02,01>/<04,04,02> L: R00-M0-Ne-C:J15-U01
W: 0025/0032 C: 0016/0021 <05,01> T: <01,02,01>/<04,04,02> L: R00-M0-Ne-C:J11-U01
W: 0026/0032 C: 0017/0021 <05,02> T: <02,02,01>/<04,04,02> L: R00-M0-Ne-C:J07-U01
W: 0027/0032 C: NULL/NULL <--,--> T: <03,02,01>/<04,04,02> L: R00-M0-Ne-C:J03-U01
W: 0028/0032 C: 0012/0021 <04,00> T: <00,03,01>/<04,04,02> L: R00-M0-Ne-C:J15-U11
W: 0029/0032 C: 0013/0021 <04,01> T: <01,03,01>/<04,04,02> L: R00-M0-Ne-C:J11-U11
W: 0030/0032 C: 0014/0021 <04,02> T: <02,03,01>/<04,04,02> L: R00-M0-Ne-C:J07-U11
W: 0031/0032 C: NULL/NULL <--,--> T: <03,03,01>/<04,04,02> L: R00-M0-Ne-C:J03-U11

The same program with the dims[] vector set to an 8x4 mesh produces the
output shown in Example 7-3.

Example 7-3 Mapping a 8x4 mesh onto a 4x4x2 nodecard

W: 0000/0032 C: 0000/0032 <00,00> T: <00,00,00>/<04,04,02>; L: R00-M0-Ne-C:J16-U01
W: 0001/0032 C: 0001/0032 <00,01> T: <01,00,00>/<04,04,02>; L: R00-M0-Ne-C:J12-U01
W: 0002/0032 C: 0002/0032 <00,02> T: <02,00,00>/<04,04,02>; L: R00-M0-Ne-C:J08-U01
W: 0003/0032 C: 0003/0032 <00,03> T: <03,00,00>/<04,04,02>; L: R00-M0-Ne-C:J04-U01
W: 0004/0032 C: 0004/0032 <01,00> T: <00,01,00>/<04,04,02>; L: R00-M0-Ne-C:J16-U11
W: 0005/0032 C: 0005/0032 <01,01> T: <01,01,00>/<04,04,02>; L: R00-M0-Ne-C:J12-U11
W: 0006/0032 C: 0006/0032 <01,02> T: <02,01,00>/<04,04,02>; L: R00-M0-Ne-C:J08-U11
W: 0007/0032 C: 0007/0032 <01,03> T: <03,01,00>/<04,04,02>; L: R00-M0-Ne-C:J04-U11
W: 0008/0032 C: 0008/0032 <02,00> T: <00,02,00>/<04,04,02>; L: R00-M0-Ne-C:J17-U01
W: 0009/0032 C: 0009/0032 <02,01> T: <01,02,00>/<04,04,02>; L: R00-M0-Ne-C:J13-U01
W: 0010/0032 C: 0010/0032 <02,02> T: <02,02,00>/<04,04,02>; L: R00-M0-Ne-C:J09-U01
W: 0011/0032 C: 0011/0032 <02,03> T: <03,02,00>/<04,04,02>; L: R00-M0-Ne-C:J05-U01
W: 0012/0032 C: 0012/0032 <03,00> T: <00,03,00>/<04,04,02>; L: R00-M0-Ne-C:J17-U11
W: 0013/0032 C: 0013/0032 <03,01> T: <01,03,00>/<04,04,02>; L: R00-M0-Ne-C:J13-U11
W: 0014/0032 C: 0014/0032 <03,02> T: <02,03,00>/<04,04,02>; L: R00-M0-Ne-C:J09-U11
W: 0015/0032 C: 0015/0032 <03,03> T: <03,03,00>/<04,04,02>; L: R00-M0-Ne-C:J05-U11
W: 0016/0032 C: 0028/0032 <07,00> T: <00,00,01>/<04,04,02>; L: R00-M0-Ne-C:J14-U01
W: 0017/0032 C: 0029/0032 <07,01> T: <01,00,01>/<04,04,02>; L: R00-M0-Ne-C:J10-U01
W: 0018/0032 C: 0030/0032 <07,02> T: <02,00,01>/<04,04,02>; L: R00-M0-Ne-C:J06-U01
W: 0019/0032 C: 0031/0032 <07,03> T: <03,00,01>/<04,04,02>; L: R00-M0-Ne-C:J02-U01
W: 0020/0032 C: 0024/0032 <06,00> T: <00,01,01>/<04,04,02>; L: R00-M0-Ne-C:J14-U11
W: 0021/0032 C: 0025/0032 <06,01> T: <01,01,01>/<04,04,02>; L: R00-M0-Ne-C:J10-U11
W: 0022/0032 C: 0026/0032 <06,02> T: <02,01,01>/<04,04,02>; L: R00-M0-Ne-C:J06-U11
W: 0023/0032 C: 0027/0032 <06,03> T: <03,01,01>/<04,04,02>; L: R00-M0-Ne-C:J02-U11
W: 0024/0032 C: 0020/0032 <05,00> T: <00,02,01>/<04,04,02>; L: R00-M0-Ne-C:J15-U01
W: 0025/0032 C: 0021/0032 <05,01> T: <01,02,01>/<04,04,02>; L: R00-M0-Ne-C:J11-U01
W: 0026/0032 C: 0022/0032 <05,02> T: <02,02,01>/<04,04,02>; L: R00-M0-Ne-C:J07-U01
W: 0027/0032 C: 0023/0032 <05,03> T: <03,02,01>/<04,04,02>; L: R00-M0-Ne-C:J03-U01
W: 0028/0032 C: 0016/0032 <04,00> T: <00,03,01>/<04,04,02>; L: R00-M0-Ne-C:J15-U11
W: 0029/0032 C: 0017/0032 <04,01> T: <01,03,01>/<04,04,02>; L: R00-M0-Ne-C:J11-U11
W: 0030/0032 C: 0018/0032 <04,02> T: <02,03,01>/<04,04,02>; L: R00-M0-Ne-C:J07-U11
W: 0031/0032 C: 0019/0032 <04,03> T: <03,03,01>/<04,04,02>; L: R00-M0-Ne-C:J03-U11

Exploiting Cartesian communicators in your application
If you want to exploit the MPI topologies framework in your existing code, the
following is a general guideline of the minimum steps required. To simplify the
description, we assume your application uses a logical 2D grid; other cases
should be analogous.
 Chapter 7. Massively parallel tuning 235

1. In your main program, declare a communicator variable, type MPI_Comm in
C/C++ or type default INTEGER in Fortran.

2. Assign this variable the (constant) value of MPI_COMM_WORLD.

3. Replace all instances of MPI_COMM_WORLD in your MPI calls with the
variable you just created. After this change, the application should still behave
exactly the same, but now you can easily change the communicator by
modifying the variable.

4. Create a suitable Cartesian communicator for your logical 2D grid by calling
MPI_Cart_create() with reorder set to true. Use the communicator variable
declared in step 1 as the output argument.

By allowing MPI_Cart_create() to reorder the ranks of the tasks, you will get a
rank ordering in the new communicator that will “naturally” reflect the desired
Cartesian grid. As long as your manual conversion of MPI rank to Cartesian
coordinate in the application code follows a regular scheme (like row-major), you
will get good locality in the Cartesian grid simply by using the new communicator
in all your point-to-point communications instead of MPI_COMM_WORLD. This
is typically a very small source code change.

If you want to invest more time into MPI topologies, you can replace your manual
MPI rank to coordinate translation with the appropriate MPI_Cart_coords() and
MPI_Cart_rank() functions, and neighbor addressing with MPI_Cart_shift().
Often this makes the MPI calls more readable, but it also is more work. Newly
written codes can and should make use of these extended features, because
expressing your algorithms in their natural topology is much clearer and offers
good opportunities for runtime optimization.

Partitioning Cartesian communicators
While MPI_Cart_create() gives you the ability to exploit locality for the
point-to-point communications, there is another useful application for Cartesian
communicators: Assume you need to perform some sort of collective
communication within a subspace of the Cartesian grid (like a broadcast along a
row or a column in a 2D grid). Normally you would use hand-crafted
point-to-point messages along these rows/columns. But alternatively, you can
use the MPI_Cart_sub() function to further partition your Cartesian
communicator, and then use collective communications across these smaller
communicators.

Note: Do this after MPI_Init(), but before any message passing calls and
before any calculations based on MPI_Comm_Size() nor MPI_Comm_rank().
This is important because the rank of your local tasks will likely change.
236 Unfolding the IBM ̂Blue Gene Solution

In general, collective operations use the tree network if they are performed in the
MPI_COMM_WORLD space. They fall back to the torus network for arbitrary
communicators. However, if you use suitable Cartesian communicators you may
be able to benefit from special hardware features of the torus network, like its
ability to issue multicasts along any axis of the torus network.

A very common task in a parallel application is to broadcast data across a row or
column in a 2D mesh, or to perform some reduction across a row or column (like
finding the maximum value in a row). In the following we show how to partition a
2D Cartesian communicator into sets of row-communicators and
column-communicators, and how to perform collective communications using
these Cartesian sub-spaces. Using the declarations from Example 7-1 on
page 233, we first create a 6x8 Cartesian communicator cart_comm:

ndims=2; dims[0]=6; dims[1]=8; periods[0]=0; periods[1]=0; reorder=1;
rc=MPI_Cart_create(MPI_COMM_WORLD, ndims,dims,periods,reorder, &cart_comm);

Next we create row-communicators by using MPI_Cart_sub(), keeping the first
dimension and dropping the second dimension of cart_comm:

MPI_Comm cart_row, cart_col;
int remain_dims[2]; /* logical vector of which dims to keep/drop */

remain_dims[0]=1; remain_dims[1]=0;
rc=MPI_Cart_sub(cart_comm, remain_dims, &cart_row);

Similarly, column communicators can be created by dropping the first dimension
and keeping the second dimension:

remain_dims[0]=0; remain_dims[1]=1;
rc=MPI_Cart_sub(cart_comm, remain_dims, &cart_col);

For each task in the 2D mesh, these new communicators will contain all the tasks
in the same row/column as the local task. Conversely, the communicator
handlers for cart_row will be different in different rows, and those for cart_col
will be different in different columns.

You can now use these one-dimensional communicators to perform collective
operations along one axis of your logical grid. For example:

� Reduction operation (MPI_MAX) along a column communicator:

rc=MPI_Reduce(send_buf, recv_buf, count, MPI_INT, MPI_MAX,
root_rank, cart_row);

� Broadcasting along a row communicator:

rc=MPI_Bcast(buf, count, MPI_REAL, root_rank, cart_row);

If your logical 2D grid is adequately mapped to the physical torus network, those
collectives may be able to exploit the special hardware features of the torus
 Chapter 7. Massively parallel tuning 237

network like its multicast capabilities. Of course, if the mapping does not fit the
physical topology, the collectives will fall back to a standard implementation
using only standard point-to-point calls underneath.

7.2 Limitations on scaling
In this section, we discuss a way of estimating the number of CPUs an
application will be able to scale to.

With all parallel applications, if we assume that the serial section of a code is
insignificant, it is the use of the network which dictates whether a code will scale
up to many thousands of CPUs efficiently. To illustrate the different scaling of an
application, we shall use the following example. For a general three-dimensional
N by N problem with the number of variables N=K*L*M in three dimensions and
processors P=xyz, the communication efficiency can be written (if we assume
that the communication and computation do not overlap), as:

For the BG/L system, this can be written as:

Equation 1: Theoretical communication efficiency:

Where:

x P/N
F Flops/variable
B Bytes/variable to/from neighbor processor
f Processing speed in flops/s = 2.8GFlops/s
c Compute efficiency = 2
d Latency = 10 μSec
b Bandwidth = 1.4Gb/s
e Communication efficiency = 0.5

In Equation 1, the latency is represented by 6d(fc/F)x and the bandwidth by
6(c/e)*(fB/Fb)x^(1/3).

Efficency ComputeTime
ComputeTime CommunicationTime+
--=

E 1

1 6d fc
F
---⎝ ⎠

⎛ ⎞ x 6 c
e
---⎝ ⎠
⎛ ⎞ f B

Fb
-------⎝ ⎠

⎛ ⎞ x1 3/++

--=

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞
238 Unfolding the IBM ̂Blue Gene Solution

With parallel applications, there are two scenarios in which we could exploit
BG/L:

� Scenario 1

BG/L can be exploited when the total problem size is fixed and the problem
size per processor drops as the number of processors increases. This means
that for any N, eventually P will dominate.

It can be seen from equation 1 that large values of N are best suited for this
scenario. Examples of applications that exhibit this type of scaling include
protein folding, weather modeling, Quantum Chrono-Dynamics (QCD),
seismic processing, and Computational Fluid Dynamics (CFD).

� Scenario 2

The other scenario in which to exploit the BGL system is when the problem
size per processor is fixed with increasing processor numbers. Examples of
codes that follow this type of scaling are Linpack, Stream, and SPPM. This
means that the latency dominates when the second term in the denominator
of equation 1 increases and the following two conditions are met:

x > 5e-6 (f/c), and
x > 5e-6(B/e)^(3/2)

Using this, we can predict when an application will fail to scale:

� F = B = 1. This is the case of transaction processing and will become
latency-bound when N/P < 200,000.

� F = 100, B = 1. This case will be come latency-bound if N/P < 2000.

� F = 1000, B = 100. This case will be latency-bound if N/P < 200.

7.3 Hints on how to parallelize codes
The following sections provide hints on how to maximize the performance of an
application on BG/L. These ideas came to light during the porting of applications
covered in Chapter 8, “Applications on Blue Gene” on page 249.

7.3.1 All-to-all communication
For a general massively parallel system which uses a single cross-bar switch,
the time for performing an MPI all-to-all communication can be written as shown
in Equation 2.
 Chapter 7. Massively parallel tuning 239

Equation 2: Total time needed for an MPI all-to-all for a general system:

where:

D Data length
N Number of processors
L Latency of adapter

From this equation, you can see that as the number of processors increases, the
bandwidth becomes insignificant, and the latency dominates. In the BG/L torus
system, the latency is dependent on the number of hops between the
processors. Therefore, the latency is modified to be:

Here we are assuming that the system is a true torus and not a grid of
processors.

Figure 7-11 shows that the latency of the all-to-all communication does not
dominate with the BG/L torus system until approximately 2048 CPUs, compared
to the single cross-bar switch systems, which scale to about 128 CPUs.

Figure 7-11 Latency of all-to-all

Time D
NB
-------- LN+=

Lmax LN

4
3

=

0

0.001

0.002

0.003

1 10 100 1000 10000

Num be r of proce ssors

Ti
m

e

s ingle c ross bar switch B G/L Torus
240 Unfolding the IBM ̂Blue Gene Solution

All of this means that with careful coding, it is possible to get all-to-all collective
communications of BG/L to scale further than is possible on single switched
systems.

7.3.2 Eager limit and message routing
On the BG/L system, eager messages are deterministically routed, while
rendezvous messages are adaptive-routed. Also messages less than or equal to
one packet (about 224 bytes) actually use a one-packet protocol. The default
eager limit is 10,000 bytes. In practice, you often achieve better
message-passing performance on BG/L by reducing the eager limit to, for
example, 450 bytes. You can do this by setting the environment variable
BGLMPI_EAGER equal to 450.

Figure 7-12 shows measurements of point-to-point exchange bandwidth, using
randomly placed tasks on a torus.

Figure 7-12 Random point-to-point bandwidth on up to 2 K CPUs

The measurement was made using an 8x8x32 partition, 2048 CPUs in
co-processor mode (the default mode). When you look at the curve of average
bandwidth vs. message size, you will see that with the default eager limit, the
average bandwidth is quite poor for 1 K to 10 K message sizes—which is an
important range for applications.

2 K Torus 8x8x32 Random Exchange

0

5

10

15

20

25

10 100 1000 10000 100000 1000000 10000000

Message Size (Bytes)

A
vg

. E
xc

ha
ng

e
B

an
dw

id
th

 (M
B

/s
ec

)

Eager=450B

Eager=10KB
 Chapter 7. Massively parallel tuning 241

Turning the eager limit down to 450 bytes gets adaptive routes working for
messages >450 bytes; shorter messages would not benefit, so 450 bytes is
generally a good choice.

For a torus, the average number of hops should be torus_size/4 in each
dimension. For an 8x8x32 torus, this would be 8 hops in z, 2 hops in x, 2 hops in
y; for a total of 12 hops. This should result in an exchange bandwidth that is
reduced from the nearest-neighbor value (about 300 MB/sec for medium to large
messages) by a factor of 12 => 300/12 = 25 MB/sec. This is reasonably close to
the maximum average bandwidth that is measured: about 22.6 MB/sec = 90% of
the theoretical bandwidth. Based on Figure 7-12, we think 450 is a good default
choice.

7.4 Other general suggestions
This section is a collection of hints and ideas for scaling applications to large
numbers of CPUs.

� Use a torus rather than a grid network.

The CPUs on the torus network are connected via six nearest neighbor links,
as shown in Figure 2-4 on page 21. The smallest physical group of nodes that
gives a true torus network in three dimensions is 8x8x8 (= 512 nodes). For a
group of nodes less than this, the interconnections at the edges are not
wrapped around; thus, the network becomes a mesh. Other sizes which are
true torus include 16x16x16 (4096) and 32x32x32 (32786) nodes.

For the 8x8x8 torus, the longest random hop length between nodes is given
by a quarter of the side length, which in this case is two intermediate node
hops away. The worst case for non-nearest neighbor is in a 32x32x64 node
torus with two randomly separated nodes by 8+8+16=32 intermediate nodes.
A node router takes 12 bytes per link, giving a latency of 32*12 = 384 bytes.
This all comes down to flight time of the messages between the nodes.

� Use gather calls on the collective network.

This is done using the appropriate optimized MPI calls listed in 6.3.5, “MPI
collective performance” on page 188. The time for the different networks is
given in 8.1.4, “Intel MPI Benchmarks” on page 258. From these
measurements you can see that it is more efficient to use all reduce type calls
using the collective network, rather than using gather type calls.

� In general, for global reductions the all reduce choice is best.

Another reason for using all reduce rather than gather operations is that the
single node collecting the gather will quickly run out of memory as the number
of nodes is increased.
242 Unfolding the IBM ̂Blue Gene Solution

� Remove arrays that are dependent on the number of processors.

It is not uncommon for an array to be created within a code which scales with
the number of processors. This has to be removed; otherwise, you will quickly
run out of memory as the number of processors is increased.

Table 7-9 shows the memory usage for a non-tuned application where the
same source was run on both BG/L and PWR4. The memory usage of BG/L
is high compared to PWR4 because as soon as it is allocated, the BG/L
system uses all of the memory requested. This is caused by the fact that
BG/L does not have any virtual memory. In contrast, the PWR4 only uses the
memory once the application touches the array space.

Table 7-9 Memory allocation/usage difference between BGL and PWR4

� Manage the serial I/O master task memory carefully.

Most applications use a single MPI task to perform disk I/O, when MPI-IO is
available, by gathering data from the worker nodes and writing the data in a
sequential manner.

This can still be efficiently utilized on BG/L as long as the time required for the
I/O is insignificant compared to the rest of the code. The main issue that
needs to be considered is the mechanism by which this single MPI master
task gathers the data and writes to disk from the multiple worker tasks.

Usually, worker tasks send their data to the master task, which receives the
data. The problem is that each message contains a head which informs the
receiver of the size of the message that is coming. Therefore, the master task
starts to allocate memory on each worker receive.

If this is not controlled, the master task will quickly allocate all of the memory
to service all of the worker task messages. This can be avoided by having the
worker tasks wait for the master to signal that they can send the data. This
allows the master to receive data, write to disk, and flush memory in a
controlled way.

� Avoid single master communication to many worker nodes.

This is demonstrated in the communication profile shown in Figure 7-13, of a
32-way parallel code. The left-hand side of the figure shows a typical nearest
neighbor halo cell communication, but the right-hand side shows the
communication from the master node acting as a serial bottleneck to the

Number of processors BG/L (MB) PWR4 (MB)

32 115 32

64 74 23

128 140 21

256 293 22
 Chapter 7. Massively parallel tuning 243

parallel tasks. This type of serialization should be avoided because it will limit
how far an application will scale.

When looking at the communication profile, you need to avoid diagonal
dependencies as shown in Figure 7-13. The rows are tasks, with the lowest
row being the master node. The colors show various MPI communication
types. Black is for the calculation time.

Figure 7-13 Single node serial communication

� What to do if you cannot remove the single master-to-many worker nodes
communication.

In many real-world applications, it is impossible to remove this serialization. It
is not possible to loop around the worker nodes with a single MPI
non-blocking send to many worker nodes, as the master node will very
quickly run out of memory as the number of CPUs is increase. One way of
overcoming this problem is to allow the master node to send to a series of
worker nodes using a series of group non-blocking sends.

The result of this is shown in Figure 7-14. The left-hand graph shows the
master task (the bottom row) sending to all the worker nodes one at a time.
This process ensures that the master task does not run out of memory, but it
is very slow and will take more time, depending upon the number of worker
nodes to be sent to.
244 Unfolding the IBM ̂Blue Gene Solution

The graph on the right shows that the master is sending to six workers using
a non-blocking send. This also ensures that the master task is not
constrained by the memory, while the time of execution has been reduced.

Figure 7-14 Using master to groups of workers

� Many application domains decompose a mesh during an initialization stage.

This is usually a serial process done on node 0, and requires a large amount
of memory to work on the whole mesh. The only way of overcoming this is to
do this pre-processing step on a different machine and then move onto the
BG/L system once the mesh files have been generated. It is possible to either
have a master node that reads the entire mesh file and distributes the data, or
to have each worker node read its particular file.

� Use appropriate MPI communicators.

It is more efficient to use MPI_Barrier and MPI_Bcast via the
MPI_COMM_WORLD communicator. For rectangular-shaped groups of
nodes, it is more efficient to use rectangular-shaped communicators rather
then the default MPI_COMM_WORLD. There is a limit of 8192 MPI
communicators.

Note: Time is along the x-axis and each row is a different MPI task. The
master node is the bottom row.
 Chapter 7. Massively parallel tuning 245

246 Unfolding the IBM ̂Blue Gene Solution

Part 3 Application porting
examples

This part presents several application porting exercises the redbook team
performed during the project. These experiences are presented for reference
only, as there is no guarantee if and when the application providers will support
their code for running on Blue Gene/L.

The performance data presented for each application was obtained during our
tests with minimal optimization of the code. It is the intention in this part to show
that it is possible to port applications without initial major effort, and that the
success of this porting operation is very much dependent on the application
structure and the time allocated for this effort.

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 247

248 Unfolding the IBM ̂Blue Gene Solution

Chapter 8. Applications on Blue Gene

The first section in this chapter presents some of the results the team that wrote
this book obtained running various benchmarks. Since the Blue Gene has a very
special architecture, some of the benchmarks may not be suitable to measure
performance on this system, thus we have selected for this book only the ones
that were possible to port and run in the six weeks allotted for the project.

This chapter also presents experimental results for various applications run on
Blue Gene during our six-week project. The applications cover diverse fields
(weather, chemistry, and so forth), and have been used as a proof of concept, for
demonstration and research purposes only, so there is no warranty or
commitment from either IBM or the application owners that these results can be
used for commercial purposes.

These applications were ported by either the IBM team or the application
provider, or in certain cases, cooperatively by IBM and the application provider.

The examples in this chapter emphasize the benefits of using Blue Gene as a
highly scalable parallel system. They present results for running applications in
various modes, exploiting the architecture of the system.

8

© Copyright IBM Corp. 2005. All rights reserved. 249

8.1 Introduction
This chapter summarizes the experience of porting and running applications on
Blue Gene/L system. The applications were chosen based on their use in various
industries, and include code from the Life Sciences, Weather, Automotive,
AeroSpace and Petroleum industries.

8.1.1 General considerations and benchmark applications
Some of the performance measuring applications on massively parallel systems,
such as Linpack, Intel MPI Benchmarks, and Nas Parallel benchmarks, were run
on Blue Gene. The data obtained for various configurations is listed in the
following sections.

8.1.2 High Performance Linpack (HPL)
The Linpack Benchmark is a measure of a computer’s floating-point rate of
execution, and it solves a (random) dense linear system in double precision (64
bits) arithmetic on distributed-memory computers. It is freely available and could
be downloaded from:

http://www.netlib.org/benchmark/hpl

Linpack is the performance metric that is used for establishing the Top 500 list of
supercomputers in the world; for more information, refer to:

http://www.top500.org

The algorithm used by HPL can be summarized by the following:

� Two-dimensional block-cyclic data distribution
� Right-looking variant of the LU factorization with row partial pivoting featuring

multiple look-ahead depths
� Recursive panel factorization with pivot search and column broadcast

combined
� Various virtual panel broadcast topologies
� Bandwidth reducing swap-broadcast algorithm
� Backward substitution with look-ahead of depth

The HPL software package requires the availability an implementation of the
Message Passing Interface (MPI) and Basic Linear Algebra Subprograms
(BLAS). For more information on HPL, go to:

http://www.netlib.org/benchmark/hpl/
250 Unfolding the IBM ̂Blue Gene Solution

Linpack results from the Blue Gene/L system
Linpack was run on Blue gene/L for various CPU counts, and this section
outlines the results obtained from these runs. The DGEMM routine used for the
runs was developed by John Gunnels in IBM Research, and is available on
request. For these runs, a hybrid node mode (also called Communication
Co-processor Mode with Computation Offload) was used. Hence, both CPUs of
each node were used for the Linpack calculation.

The DGEMM code was tuned to take advantage of this feature, and running in
this hybrid mode resulted in a performance improvement of 2 - 4% over that on
Virtual node mode. Because of the enormous computing capability, this coding
exercise could yield approximately 3 Tflops in performance. For details about the
various modes in which the nodes could be used, refer to 3.1.1, “Compute nodes
and I/O nodes” on page 40.

The theoretical peak (Rpeak) performance is manually computed and not
measured, in order to determine the theoretical peak rate of execution of floating
point operations for the machine. This is determined by counting the number of
floating point additions and multiplications (in full precision) that can be
completed during a cycle time of the machine.

On Blue Gene/L this is computed as:

Rpeak in GFlops = (number_of_cpus) x (clock_speed_in_GHz) x 4

Here we consider four floating point operations (although there is only a single
floating point unit per CPU), because each CPU is capable of performing two
(floating point multiply add) FMA operations, for a total of four floating point
operations simultaneously per dual core chip (see 2.2.4, “Double floating point
unit overview” on page 33).

This is the same calculation as for POWER4 (pSeries). However, the difference
derives from the fact that the POWER4 processor has two independent floating
point units, each capable of independent FMAs at the same time (for details, see
2.2.1, “Processor – System-on-a-chip – the PPC440” on page 27, and 2.2.4,
“Double floating point unit overview” on page 33).

The measured performance (Rmax) is in Gflop/s, billions of floating point
operations per second.

The graph in Figure 8-1 shows the Linpack performance on the Blue Gene/L
system. Blue Gene shows almost linear scaling when the number of processors
increases (in this test case, up to 16384 processors).
 Chapter 8. Applications on Blue Gene 251

Figure 8-1 Linpack performance on BG/L DD2 system

The percentage to peak is computed as (Rmax / Rpeak) * 100. The graph in
Figure 8-2 plots Linpack peak percentage, which is sometimes referred to as
efficiency, and this shows almost linear scalability on Blue Gene/L.

Linpack performance on Blue Gene

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Nbr. of processors

G
flo

ps

BG/L
252 Unfolding the IBM ̂Blue Gene Solution

Figure 8-2 Linpack scalability on BG/L

The Linpack data shown here was received from John Gunnels, IBM Research,
at the time of writing.

8.1.3 NAS Parallel Benchmarks
The NAS Parallel Benchmarks (NPB) consist of a small set of programs
designed to help evaluate the performance of parallel supercomputers. It has
been developed by the National Aeronautics and Space Administration
Advanced Supercomputing (NAS) division.

Linpack scalability

60

65

70

75

80

85

90

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Nbr. of processors

Pe
rc

en
ta

ge
 o

f p
ea

k
BG/L

Note: The Linpack benchmark data is changing constantly, as new runs
exploit the continuous BG/L software driver and compiler improvements. For
more information, refer to:

http://www.top500.org
 Chapter 8. Applications on Blue Gene 253

The benchmarks, which are derived from computational fluid dynamics (CFD)
applications, consist of five kernels (FT, MG, IS, EP, CG), and three
pseudo-applications (BT, SP, LU). These are MPI-based source-code
implementations, written and distributed by NAS. This section presents the
benchmark results for FT, MG, CG, and LU.

� The five kernels are:

– EP - Random number generation by the multiplication congruence method

– MG - Simplified multigrid kernel for solving a 3D Poisson PDE

– CG - Conjugate gradient method for finding the smallest eigenvalue of a
large-scale sparse symmetric positive definite matrix

– FT - Fast-Fourier transformation for solving a 3D Partial Differential
Equation

– IS - Large-scale integer sort

� The three pseudo-applications are:

– LU - CFD application using the symmetric Successive Overrelaxation
(SOR) iteration

– SP - CFD application using the scalar Alternating Directions Implicit (ADI)
iteration

– BT - CFD application using the 5x5 block size ADI iteration

For details on NAS Parallel Benchmarks, or to download the benchmark suite,
see:

http://www.nas.nasa.gov/Software/NPB/

The results from the benchmark execution on two systems are included here.
These were performed by San Diego Super Computing Center.

� IBM Eserver Blue Gene Solution, consisting of 2048 700MHz PowerPC 440
compute processors (2-way nodes) connected by various networks

� SDSC DataStar cluster, which has 1440 1.5-GHz Power4+ processors in
8-way p655 nodes connected by a High Performance Switch

On both systems, four NPBs are considered: CG, FT, MG, LU, and all. The test
case used was Class C V2.4. Strong scaling scans are presented for each code.

Note: In this discussion “#p” stands for number of processors; for example,
512p stands for 512 processors.
254 Unfolding the IBM ̂Blue Gene Solution

Compiler flags used on Blue Gene/L
In this section, we summarize the experience of using various compiler options
on Blue Gene/L:

� The FORTRAN xlf compiler was V9.1.

� Two primary options were considered:

– -O3 -qarch=440d

– -O5 -qarch=440d

� For CG, FT, and MG, -O5 -qarch=440d gave better performance than -O3
-qarch=440d. The speedup is largest (1.14x to 1.17x) for CG on 8p and 16p.
The benefit was modest (1.00x to 1.07x) for all three loops on 32p.

� For LU, -O5 -qarch=440d was worse than -O3 -qarch=440d. The slowdown
(0.87x to 0.91x) showed little dependence on the number of processors.

� Data with options -O5 -qnoipa -qarch=440d was also measured. This data
shows that the speedups for CG and MG, as well as the slowdown for LU,
were all due to ipa. The speedup for FT was half due to -O5 and half due to
ipa.

� Additional measurements were made for -O3 -qhot=simd -qarch=440d.
These results were the same as for -O5 -qarch=440d.

On DataStar (with p655s):
� The FORTRAN compiler was V8.1.

� Two primary compiler options were considered:

– -O3 -qarch=pwr4 -qtune=pwr4

– -O4 -qnoipa

� For CG, MG, and LU, performance was essentially the same with either
option. The case of MG on 1024p appears worse with -O4 -qnoipa, but this
was probably because of noise in the measurement of a very short time.

� For FT, -O4 -qnoipa was better than -O3 -qarch=pwr4 -qtune=pwr4.

The speedup (1.08x to 1.21x) was appreciable for 8p to 512p. For smaller p, the
memory bandwidth was not stressed as much. For 1024p, the problem did not
scale.

The various plots use the results for the optimal compiler options based on the
preceding experience, as shown in Table 8-1.
 Chapter 8. Applications on Blue Gene 255

Table 8-1 Compiler command options for NAS benchmark suite

The plotted results were made with mpirun, specifying explicit partitions to make
a fair comparison with virtual node mode.

Following is a set of graphs from the data generated on p655 and Blue Gene/L
for the various runs of CG, FT, MG and LU. In the graphs, co stands for
co-processor mode, and vn for virtual node mode. BG/L stands for Blue Gene/L
and p655 for 8-way POWER4 system pSeries 655.

Figure 8-3 CG scalability on p655 and BG/L

CG shows good scalability on Blue Gene. The testing of CG is still in progress,
and it was observed that for more than 512p, it generated erroneous results.

Code Blue Gene p655s

CG -O5 -qarch=440d -O3 -qarch=pwr4 -qtune=pwr4

 FT -O5 -qarch=440d -O4 -qnoipa

MG -O5 -qarch=440d -O3 -qarch=pwr4 -qtune=pwr4

 LU -O3 -qarch=440d -O3 -qarch=pwr4 -qtune=pwr4

CG Class C v2.4

0.0

50.0

100.0

150.0

200.0

0 100 200 300 400 500 600
Processors

M
Fl

op
s/

Pr
oc

es
so

r

p655@1.5GHz

BG/L @0.7GHz co
mode
BG/L@0.7GHz vn
node mode
256 Unfolding the IBM ̂Blue Gene Solution

Figure 8-4 FT scalability on p655 and BG/L

As seen in the graph in Figure 8-4, FT shows strong scalability on Blue Gene/L.
FT does not scale on >512p because of an algorithm limitation, so that data is
omitted in this plot.

Figure 8-5 MG scalability on p655 and BG/L

FT Class C v2.4

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 100 200 300 400 500 600

Processors

M
Fl

op
s/

Pr
oc

es
so

r

p655@1.5 GHz

BG/L@0.7GHz
co mode
BG/L@0.7GHz
vn mode

MG Class C v2.4

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0

0 200 400 600 800 1000 1200

Processors

M
Fl

op
s/

Pr
oc

es
so

r

p655@1.5GHz
BG/L co mode

BG/L vn mode
 Chapter 8. Applications on Blue Gene 257

The graph in Figure 8-5 shows strong scalability for MG.

Figure 8-6 LU scalability on p655 and BG/L

The graph in Figure 8-6 shows strong scalability for LU on Blue Gene/L.

8.1.4 Intel MPI Benchmarks
Intel MPI Benchmarks is formerly known as “Pallas MPI Benchmarks” -
PMB-MPI1 (for MPI1 standard functions only).

Intel MPI Benchmarks - MPI1 provides a set of elementary MPI benchmark
kernels. You can run all of the supported benchmarks, or just a subset, specified
via the command line, can be run. The rules (such as time measurement,
message lengths, selection of communicators to run a particular benchmark) are
program parameters. For more detail, see the product documentation included in
the package downloadable from:

http://www.intel.com/software/products/cluster/mpi/mpi_benchmarks_lic.htm

To help compare the performance of various computing platforms or MPI
implementations, the need for a set of well-defined MPI benchmarks arises. This
is where Intel MPI Benchmarks (a comprehensive set of MPI benchmarks)
comes into play. Its objectives are:

LU Class C v2.4

0.0

500.0

1000.0

1500.0

2000.0

0 200 400 600 800 1000 1200

Processors

M
Fl

op
s/

Pr
oc

es
so

r
p655@1.5GHz
BG/L cp mode

BG/L vn mode
258 Unfolding the IBM ̂Blue Gene Solution

� To provide a concise set of benchmarks targeted at measuring important MPI
functions: point-to-point message-passing, global data movement and
computation routines, one-sided communications and file I/O

� To set forth precise benchmark procedures: run rules, set of required results,
repetition factors and message lengths

� To avoid imposing an interpretation on the measured results: execution time,
throughput and global operations performance

http://www.pallas.de/e/products/pmb/index.htm
http://www.intel.com/software/products/cluster/pallas.htm

Results and analysis
Intel MPI Benchmarks were run on 32 Blue Gene/L nodes in coprocessor mode.
The Intel MPI Benchmarks suite consists of a number of MPI benchmarks.
PingPong, AlltoAll, Bcast and Barrier results are summarized here. The basic
MPI data type for all messages is MPI_BYTE. In some case, two graphs are
plotted to emphasize the variation in latency with message length.

PingPong
PingPong is a single transfer benchmark that focuses on a single message
transferred between two processes. This is used for measuring startup and
throughput of a single message between the two processes. The benchmark is
run with varying message lengths, and timings are averaged over multiple
samples.

The zero byte latency obtained for Blue Gene/L was less than 3 microseconds
(usec).
 Chapter 8. Applications on Blue Gene 259

Figure 8-7 Memory Bandwidth from PingPong on BG/L

Figure 8-7 shows the memory bandwidth measured with PingPong. The shape of
the network graph is not important in this case; rather, we measured the actual
network transfer capability. The theoretical peak bandwidth of the Blue Gene
Ethernet network is about 150 MB/s, and we observed half the bandwidth when
the message size tested was about 1Kbyte.

MPI collective benchmarks
On Blue Gene/L, the collective network (tree-shaped) may also be used (besides
the torus network) for MPI calls that are more global. MPI implementation will use
that network each time it happens to be more efficient than the torus network for
collective communication. For details on the different networks, refer to 2.1.6,
“Communications” on page 19.

Barrier
Barrier benchmarks the MPI_Barrier() function. The barrier performance on
Blue Gene/L was found to be very good.

 PingPong

0
10
20
30
40
50

60
70
80
90

100

1 10 100 1000 10000

Message Size [KBytes]

M
em

or
y

B
an

dw
id

th
 (M

B/
s) BG/L (0.7GHz)
260 Unfolding the IBM ̂Blue Gene Solution

Figure 8-8 Barrier BG/L versus p690

In the case of the barrier performance measured on Blue Gene, initially the time
increases with the number of processes for 8 processes, then it decreases again
at 32 processes. This variation in the barrier performance may be attributed to
the way in which the processors are assigned, and the various networking
topology that is being used (depending on the number of processors).

For efficiency, Blue Gene has a dedicated (hardware) barrier network, also
known as a global interrupt network, and this may be the reason for the very low
latency that was observed for the barrier test – for 32 processors it is only 2.75
usec.

The shape of the graph is unexpected, and this is due to the fact that different
network algorithms are used for different numbers of processors (we ran the test
for 2, 4, 8, 16, and 32 CPUs).

For example, for 8 processors, the intercommunication network shape is 2x2x2
mesh, resulting in an additional layer of communication. Hence, the latency goes
up (the global interrupt network does not provide communication to all nodes).
This is also the case with the 16 processor run. In the case of 32 processors,
however, the dedicated (barrier) hardware takes over the communication,
resulting in lower latency.

Barrier

3.49 3.6

4.35

2.752.51

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 10 100

Number of processors

t_
av

g
[u

se
c]

BG/L @0.7GHz
 Chapter 8. Applications on Blue Gene 261

8.2 DL_POLY
DL_POLY is a parallel molecular dynamics (MD) simulation package developed
at Daresbury Laboratory UK by W. Smith under auspices of the Engineering and
Physical Sciences Research Council (EPSRC) for the EPSRC's Collaborative
Computational Project for the Computer Simulation of Condensed Phases and
the Molecular Simulation Group at Daresbury Laboratory.

There are two versions of DL_POLY currently available. DL_POLY v2.15 is the
original version, which has been parallelized using the Replicated Data strategy
and is useful for simulations of up to 30,000 atoms on 100 processors.

DL_POLY v3.02 is a version which uses Domain Decomposition (DD) to achieve
parallelism and is suitable for simulations of order 1 million atoms on 8-1024
processors. Both of these versions use distributed data. Because of its suitability
for reaching large numbers of CPUs, we concentrate on v3.05 for the following
work.

8.2.1 Application description
The DD strategy is one of several ways to achieve parallelization in MD. Its name
derives from the division of the simulated system into spatial blocks or domains,
each of which is allocated to a specific processor of a parallel compute. The DD
strategy underpinning DL_POLY v3 is based on the link cell algorithm of
Hockney and Eastwood (ref. Hockney, R. W., and Eastwood, J. W. 1981,
Computer Simulation Using Particles. McGraw-Hill International).

This requires that the cut off applied to the interatomic potentials is relatively
short-ranged. As with all DD algorithms, there is a need for the processors to
exchange halo data, which in the context of link-cells means sending the
contents of the link cells at the boundaries of each domain to the neighboring
processors so that each may have all necessary information to compute the pair
forces acting on the atoms belonging to its allotted domain.The DD strategy is
applied to complex molecular systems as follows:

1. Using the atomic coordinates, each processor calculates the forces acting
between the atoms in its domain - this requires additional information in the
form of the halo data, which must be passed from the neighboring processors
beforehand. The forces are usually comprised of:

a. Atom-atom pair forces (for example, Lennard Jones, Coulombic, and so
forth)

b. Non-rigid atom-atom bonds

c. Valence angle forces
262 Unfolding the IBM ̂Blue Gene Solution

d. Dihedral angle forces

e. Improper dihedral angle forces

2. The computed forces are accumulated in atomic force arrays independently
on each processor.

3. The force arrays are used to update the atomic velocities and positions of all
the atoms in the domain.

4. Any atom which effectively moves from one domain to another, is relocated to
the neighboring processor responsible for that domain.

The intramolecular terms in DL_POLY v3 are managed through bookkeeping
arrays in which the atoms involved in any given bond term are explicitly listed.
The non-bonded interactions are handled with a Verlet neighbor list (see Allen,
M. P., and Tildesley, D. J., 1989, Computer Simulation of Liquids. Oxford:
Clarendon Press).

The Verlet list records the indices of all atoms within the cutoff radius of a given
atom. For systems with periodic boundary conditions, DL_POLY v3 employs the
Ewald Sum to calculate the Coulombic interactions. The reciprocal space
component is calculated using Fast Fourier Transform (FFT). This FFT
distributes the Smoothed Particle Mesh (SPME) charge array over the
processors in a manner that is completely commensurate with the distribution of
the configuration data under the DD strategy.

As a consequence, the FFT handles all the necessary communication implicit in
a distributed SPME application. The final stage in the DD strategy is the global
summation of the total configuration energy and virial, which must be obtained as
a global sum of the contributing terms calculated on all nodes.

8.2.2 Planning for the application
For DL_POLY v3.02 we used two test cases:

� Sodium Chloride with Ewald Sum. (216000 ions). This uses 200 steps. This
particular test case was of interest due to the extra communication required
for the long-range force calculations.

� Gramicidin A with water solvating (792960 atoms). This simulation of the
gramicidin A molecule in 4012 water molecules uses neutral group
electrostatics and rigid bond dynamics for the water molecules and selected
bonds of the gramicidin. This uses 50 time steps.
 Chapter 8. Applications on Blue Gene 263

8.2.3 Characteristics of execution
Using a trace tool on the MPI calls, the DL_POLY application has a very low
communication time compared to calculation. It is roughly 10% of the execution
time. Figure 8-9 shows a trace of the MPI calls during a typical DL_POLY run on
32 CPUs for the NaCl test case.

Figure 8-9 Message passing events for NaCl on 32 CPUs

The left-hand side of Figure 8-9 shows a typical initialization step within any
application, where the data is read into the application and distributed to the
appropriate node. After this, most of the execution is black, indicating calculation
with small amounts of necessary communication.

The right-hand side shows the final collection to data for output via a global sum.
This global sum has been implemented using send/recv to single node to prevent
any memory problems as the number of CPUs is increased. For most real world
applications this type of behavior is to be expected. The initialization and data
write out are serializing the execution but the main calculation phase is
dominated by calculation rather than communication.

Figure 8-10 shows a zoomed-in portion of the communication within the middle
of the execution. This figure shows that the communication between the nodes is
well ordered, and that there is no previous node dependency, which causes the
communication to be serialized.
264 Unfolding the IBM ̂Blue Gene Solution

Figure 8-10 Communications within central calculation phase (zoomed in)

8.2.4 Scaling and tuning (optimization)
The following two graphs, Figure 8-11 and Figure 8-12, show comparative
performance for Blue Gene and IBM POWER4 machines. These comparisons
are artificial because most test cases for BGL would be large enough to exercise
many 1000s of CPUs, but most computer centers do not have POWER4 clusters
with more than 1000 CPUs. Consequently, to make a comparison of
performance, we have reduced the problem size, which obviously reduces the
MMP characteristics of the BGL system. What these tests do show, however, is
the parallel scaling of the application, and they hint at the type of input data sets
required.
 Chapter 8. Applications on Blue Gene 265

Figure 8-11 NaCl test case on BGL and PWR4

The NaCl test case shows that the BGL system scales very well with increased
CPUs, as indicated by the higher gradient. Ideal scaling would be a 45 degree
line. The application also behaves well in that there are no obvious serial
sections in the execution, as the line is straight. Also, the fact that the lines would
pass though the origin shows that the application is not dominated by the serial
input or output stage.

NaCl original

0

100

200

300

400

500

600

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

1/(number of CPUs)

El
ap

se
d

tim
e

BGL PWR4
266 Unfolding the IBM ̂Blue Gene Solution

Figure 8-12 Gramicidin test case on BGL and PWR4

The Gramicidin test case shows a slower scaling compared to the NaCL test
case. Also the lines show that the serial sections of the execution dominate the
runs. One way of overcoming this would be to increase the problem size to
ensure that the calculation section increases.

While sodium chloride is a very isotropic system, most are not and variations in
the array requirements can be severely different. This means that there is no way
for the code to know that a system is anisotropic beforehand, and the memory
requirements for each node are difficult to predict. This is important to estimate
due to the managing the memory requirements per node.

With the DL_POLY application, the long-range forces are important in
determining the amount of extra memory required per node and the amount of
communication required. The main goal of deciding the problem size is to ensure
that the unit cell is held within the domain of the node, thus reducing the amount
inter-node communication, called link cells. When the number of CPUs is
increased with a fixed problem size, this will become a issue.

Once the number of link cells per processor drops below 4, the memory
requirement begins to grow. This is because the halo data establishing continuity
across domain boundaries becomes an ever-increasing fraction of the domain
contents. The transfer buffer then begins to grow. Of course, the buffer is already
larger than it may need to be to deal with anisotropy. The way to overcome this is

Gramicidin

0
50

100
150
200
250
300
350
400
450
500

0 0.005 0.01 0.015 0.02

1/(number of processors)

El
ap

se
d

tim
e

BGL PWR4
 Chapter 8. Applications on Blue Gene 267

to increase the problem size so that the unit cell is contained within the domain,
which is held on a few processors.

Although the initialization and final data output is serial, the main calculation
phase dominates the total calculation time. As the number of CPUs is increased,
this calculation time is decreased. The message passing is well-behaved, which
means that, for a large enough test case, this application will scale well up to
many thousands of CPUs on the BGL system.

8.3 AMBER8
Parallel computing has long been recognized as a very powerful tool for faster
simulations. As the speed of single processors approaches physical limitations,
such as the speed of light, heat dissipation and memory bandwidth, it becomes
more difficult to improve performance based on single processors. These
physical limitations make using an ensemble of processors an attractive
alternative to faster clock speeds for placing more computer power into one
machine.

Blue Gene/L, the first generation of massively parallel systems, was used to port
AMBER81. Chemists have long recognized the benefit of parallelizing
applications, and molecular mechanics and molecular dynamics have been no
exception2. In this redbook we report our efforts to port and optimize AMBER8 to
a massively parallel machine such as Blue Gene/L. Clearly, AMBER8 is an
important application and since Blue Gene/L provides a vision for protein
science3, AMBER8 is well suited for this type of study.

8.3.1 AMBER8 description
AMBER, or Assisted Model Building with Energy Refinement, is a flexible suite of
programs for performing molecular mechanics and molecular dynamics
calculations based on force fields4. Although the name of the program is
AMBER, none of the modules is called AMBER. All the modules together

1 See: D.A. Pearlman, D.A. Case, J.W. Caldwell, W.R. Ross, T.E. Cheatham, III, S. DeBolt, D.
Ferguson, G. Seibel and P. Kollman. AMBER, a computer program for applying molecular mechanics,
normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures
and energies of molecules. Comp. Phys. Commun. 91, 1-41 (1995)
2 See: The special issue in Theoretica Chimica Acta Volume 84, Number 4/5, 1993
3 See: F. Allen et al. IBM Systems Journal 40, 310(2001)
4 See: D.A. Pearlman, D.A. Case, J.W. Caldwell, W.R. Ross, T.E. Cheatham, III, S. DeBolt, D.
Ferguson, G. Seibel and P. Kollman. AMBER, a computer program for applying molecular mechanics,
normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures
and energies of molecules. Comp. Phys. Commun. 91, 1-41 (1995)
268 Unfolding the IBM ̂Blue Gene Solution

perform different functions and collectively are used to simulate large
biomolecular systems.

To provide a brief overview as to how AMBER works, Figure 8-13 illustrates
schematically how data flows from the initial set of Cartesian coordinates to the
energy programs and finally to the analysis of the results. The set of Cartesian
coordinates correspond to each of the atoms in the entire systems; they are
usually obtained from x-ray crystallography, NMR spectroscopy, or by using a
graphical friendly interface to build the actual system of interest. The input for the
Cartesian coordinates is required in the Protein Databank (PDB™) format.

Figure 8-13 Selected modules and data flow in AMBER

The programs LEaP and Antechamber provide utilities or functionality to prepare
all the files that are required to run the energy programs. The other files required
to run the energy program correspond to the topology files that contain
information about connectivity, atom names, atom types, residue names, and
charges. Information for standard parameters is also available. Finally, another
important file contains all the commands; this file is normally called mdin or gbin,
depending on the type of calculation.

Antechamber,
LEaP

 Cartesian
coordinates

for each
atom in the
system (

PDB format)

LES
Information

Sander, nmode,
pmemd

NMR or
XRAY

Information mm-pbsa ptraj

prmtop prmcrd
 Chapter 8. Applications on Blue Gene 269

8.3.2 AMBER8 characteristics
Within AMBER8, Sander is the primary program used for molecular dynamics
simulations, and is the only program considered in our current study. Sander
carries out energy minimization, molecular dynamics, and NMR refinements.
AMBER is floating point-intensive FORTRAN code. Sander performs
minimizations and molecular dynamics. The minimization of the energy is fairly
standard and involves changes in the structure to lower the energy of the system
until a sufficiently low gradient is found.

On the other hand, the molecular dynamics of the code carry out simulations by
integrating Newtonian equations of motion. The MD calculations save system
configurations at regular intervals during the simulation. This is done sequentially
and it is used for analysis. Basic free energy calculations using thermodynamics
integration can also be performed. The version used in this study corresponds to
AMBER8 for IBM systems. For more information about AMBER on IBM systems,
visit:

http://www.msi.umn.edu/~cpsosa/ChemApps/MolMech/amber/amber.html

The initial version utilized to port Sander was mainly the IBM AIX version.
However, since it was also running on Linux on POWER, sections of this version
were used as well. Since there is an AIX version and Linux on POWER as well,
porting AMBER8 was not difficult. AMBER8 uses MPI for message passing.
Most of the work was in transforming the AIX configure file into a Blue Gene/L
file.

8.3.3 Planning for AMBER8
AMBER8 has been installed and tested on a number of platforms, using UNIX
machines from IBM, Sun™, Hewlett-Packard, DEC (Compaq), and Silicon
Graphics, and on Red Hat Linux and Windows 95/98/NT/2000 (running on Intel
Pentium and Itanium® machines).

The AMBER8 programs mainly utilize dynamic memory allocation, and do not
need to be compiled for any specific size of problem. Some sizes related to NMR
refinements are defined in nmr.h, and some dimensioning information for
QM/MM calculations is in cp.h. If you receive error messages directing you to
look at these files, you may need to edit them, then recompile.

The current Blue Gene/L version of AMBER8 targets sander and pmemd to run
on the compute nodes. All the other modules will have to be run on the front-end
node. This is due to the fact that sander and pmemd are the most CPU-intensive
modules and the ones that have extensively been parallelized.
270 Unfolding the IBM ̂Blue Gene Solution

http://www.msi.umn.edu/~cpsosa/ChemApps/MolMech/amber/amber.html

8.3.4 Blue Gene/L features
The system used to carry out this study was an early release of Blue Gene/L
prototype hardware consisting of 4096 nodes. Each node has 256 MB of
memory. Each node is has two PowerPC 440 cores (a low-power processor
typically used in embedded applications). Each node has 4 MB of L3 cache
shared between the two cores.

Each core has a small L2 cache that is coherent between the two cores, and a
larger L1 (32 K instruction and 32 K data) that is not coherent. Each node has
five networks, three of which are available to user applications. These networks
are:

� A 3D point-to-point torus running at 1.25 Gb/sec per link on each of the six
links.

� A global interrupt network used for extremely fast barriers.

� A global collective (tree) that can be used for reductions, broadcasts, and
barriers. The collective network has a 2.5 Gb/sec bandwidth.

The actual production Blue Gene/L system consists of 16384 nodes (32768
processors). Each node has 512 MB of memory. The nodes are the same as the
prototype hardware, except that the clocks run at 700 MHz. Because everything
in the node is on the same ASIC, the 40% increase in clock frequency usually
results in more than a 40% improvement in performance because the memory is
faster and the networks are faster (1.4Gb/sec on each of the 6 links on the torus.
2.8Gb/s on the tree). All the runs were carried out using the co-processor mode.

Both machines are located at IBM in Rochester, Minnesota. The early prototype
system is #8 on the top500 supercomputers list. The 16-rack system in
Rochester is currently the fastest machine in the world.

8.3.5 Scaling and tuning AMBER8
It is important to point out that the study presented here corresponds to Part I. In
Part I, our objective is to port AMBER8 to Blue Gene/L and test a series of input
files to evaluate the scalability. Part II looks at optimizing AMBER8 for the Blue
Gene/L architecture (scalability) as well as for the PowerPC 700 MHz
architecture (single processor performance). Thus, in Part I we used a prototype
machine for most of our runs. The objective was to look at the porting experience
and identify the cases that tend to scale well on this type of architecture.

The first test that we selected to run AMBER is the jac benchmark; see
Figure 8-14. This is a joint AMBER-CHARMM benchmark. It considers a protein
dhfr (dihydrofolate reductase) in an explicit water bath with cubic periodic
boundary conditions. Details of system size and simulation conditions are 23,558
 Chapter 8. Applications on Blue Gene 271

atoms, cubic periodic box, 62.23 Å dimension, 9Å nonbond cutoff with 2Å buffer,
that is, list with 11Å cutoff, 1 fs time step, 1000 steps, microcanonical (NVE)
ensemble (constant energy, constant volume), bonds to hydrogen constrained
(SHAKE). The particle mesh Ewald (PME) method was used for calculating the
Lennard-Jones (LJ) and electrostatic interactions with the 64x64x64 grid; the
equilibration temperature was 300 K.

Figure 8-14 Joint AMBER-CHARMM test (jac) running on early Blue Gene hardware

Figure 8-14 illustrates the performance of the jac test case; as mentioned, this
test case makes use of the Particle Mesh Ewald (PME) code. For more
information, refer to the AMBER8 User’s Manual, available at:

http://amber.scripps.edu

In this case, we see that the efficiency of sander running this particular
functionality is higher than 50%, where we define efficiency as the ratio between
the parallel speedup (S) over the number of processors (N).

As we increase the number of processors to 64 and 128, the scalability
decreases to 38% and 24%, respectively.

0

5

10

15

20

25

30

35

0 50 100 150

Number of Processors

Pr
al

le
l S

pe
ed

up

Efficiency S
N
----=
272 Unfolding the IBM ̂Blue Gene Solution

Example 8-1 illustrates where most of the time is spent when running the PME
option in the sander module. This MPI profile is fairly different from the one that
we illustrate for the generalized Born functionality.

Example 8-1 The jac profile capture on processor 127

>>>>>>>>PROFILE of TIMES for process 127
 Build the list 3.42 (69.82% of List)
 Other 1.48 (30.18% of List)
 List time 4.90 (8.62% of Nonbo)
 Short_ene time 14.65 (63.32% of Direc)
 Other 8.49 (36.68% of Direc)
 Direct Ewald time 23.14 (44.55% of Ewald)
 Adjust Ewald time 0.16 (0.31% of Ewald)
 Self Ewald time 0.01 (0.02% of Ewald)
 Fill Bspline coeffs 5.49 (27.57% of Recip)
 Fill charge grid 0.22 (1.08% of Recip)
 Scalar sum 0.01 (0.05% of Recip)
 Grad sum 0.36 (1.79% of Recip)
 FFT communication ti 5.82 (50.19% of FFT t)
 Other 5.78 (49.81% of FFT t)
 FFT time 11.60 (58.32% of Recip)
 Other 2.23 (11.19% of Recip)
 Recip Ewald time 19.89 (38.30% of Ewald)
 Force Adjust 3.39 (6.52% of Ewald)
 Virial junk 5.02 (9.66% of Ewald)
 Start sycnronization 0.29 (0.56% of Ewald)
 Other 0.04 (0.08% of Ewald)
 Ewald time 51.95 (91.36% of Nonbo)
 Other 0.01 (0.02% of Nonbo)
 Nonbond force 56.86 (79.76% of Force)
 Bond/Angle/Dihedral 1.15 (1.61% of Force)
 FRC Collect time 12.96 (18.18% of Force)
 Other 0.32 (0.45% of Force)
 Force time 71.28 (86.30% of Runmd)
 Shake time 0.90 (1.09% of Runmd)
 Verlet update time 1.39 (1.68% of Runmd)
 CRD distribute time 8.98 (10.87% of Runmd)
 Other 0.05 (0.06% of Runmd)
 Runmd Time 82.60 (96.42% of Total)
 Other 3.07 (3.58% of Total)
 Total time 85.67 (100.0% of ALL)

The second test corresponds to a generalized Born myoglobin simulation. This
protein has 2492 atoms, and is run with a 20 Å cutoff and a salt concentration of
0.2 M, with nrespa=4 (long-range forces computed every 4 steps). This is the test
case in the benchmarks/gb_mb subdirectory of the AMBER8 distribution.
 Chapter 8. Applications on Blue Gene 273

Figure 8-15 Generalized Born myoglobin simulation test (gb_mb)

Figure 8-15 shows the performance for gb_mb. In this case we see that
scalability up to 128 processors is almost 70%. This is indeed very good since
the tested version corresponds to the version ported to Blue Gene/L.

Example 8-2 shows the MPI profile for the generalized Born (GB) option. Clearly,
from looking at these two profiles, the code that dominates the gb_mb calculation
is no longer the GB section, but instead the nonbond forces section.

Example 8-2 The gb_mb profile capture on processor 63

>>>>>>>>PROFILE of TIMES for process 63
 Calc gb radii 21.48 (43.85% of Gen B)
 Communicate gb radii 3.56 (7.27% of Gen B)
 Calc gb diag 8.42 (17.20% of Gen B)
 Calc gb off-diag 15.48 (31.61% of Gen B)
 Other 0.03 (0.07% of Gen B)
 Gen Born time 48.98 (100.0% of Nonbo)
 Nonbond force 48.98 (91.53% of Force)
 Bond/Angle/Dihedral 1.21 (2.26% of Force)
 FRC Collect time 2.35 (4.39% of Force)
 Other 0.97 (1.82% of Force)
 Force time 53.51 (95.71% of Runmd)
 Shake time 0.52 (0.93% of Runmd)
 Verlet update time 0.09 (0.16% of Runmd)

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150

Number of Processors

Pa
ra

lle
l S

pe
ed

up
274 Unfolding the IBM ̂Blue Gene Solution

 CRD distribute time 1.75 (3.13% of Runmd)
 Other 0.03 (0.06% of Runmd)
 Runmd Time 55.91 (99.18% of Total)
 Other 0.46 (0.82% of Total)
 Total time 56.37 (100.0% of ALL)

The third case that we present corresponds to hemoglobin. This a protein
solvated with TIP3 water, in a periodic box. There are 44,247 total atoms, and
PME is used with a direct space cutoff of 8 Å. This 500-step test is in
amber8/benchmarks/hb; it uses a truncated octahedral box and nrespa=2.

Figure 8-16 Hemoglobin simulation test (hb)

In Figure 8-16 we display the performance of the hb test case. This case is
similar to the jac benchmark. Thus, the performance displayed in Figure 8-16 is
not surprising. This case has an even shorter cut-off of only 8 Å, and we see a
faster performance decrease.

The last two cases correspond to two additional generalized Born simulations. In
the first case, gb_alp, shown in Figure 8-17, we see the characteristic nice
scalability of this functionality in the sander module.

0

5

10

15

20

25

0 20 40 60 80 100 120 140

Number of Processors

Pa
ra

lle
l S

pe
ed

up
 Chapter 8. Applications on Blue Gene 275

Figure 8-17 α-lytic protease simulation test (gb_alp)

In Figure 8-18, we see another generalized Born simulation gb_cox2. Again, in
this example the efficiency up to 128 of processors is almost 75%. This is a
rather remarkable result.

Figure 8-18 gb_cox2

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

Number of Processors

Pa
ra

lle
l S

pe
ed

up

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140

Number of Processors

Pa
ra

lle
l S

pe
ed

up
276 Unfolding the IBM ̂Blue Gene Solution

In summary, we have shown that AMBER8 is a well-suited application for an
architecture such as Blue Gene/L. In Part II we look at optimization and further
scalability, as well as testing the pmemd module.

8.4 AVBP
AVBP is a standard code used in Europe to perform Large Eddy Simulation of
reacting flows in complex geometry combustors. The main fields of application
are gas turbines, rocket engines, industrial furnaces, and piston engines. This
code solves the fully compressible unsteady Navier Stokes equations for laminar
and turbulent reacting flows on hybrid grids (Moureau et al., 2005). It was built
with European support in the 90s, specifically for parallel computers.

In the last five years, AVBP has started to reach its full potential, allowing
computations of both non-reacting (Schluter et al., 2000, 2004, Priere et al.,
2004) and reacting flows in complex geometries (Angelberger et al., 2000, Selle
et al., 2004). AVBP is developed jointly by CERFACS and Institut Français du
Pétrole. It is used by multiple laboratories (EM2C in Paris, IRPHE in Marseille,
IMF in Toulouse, Coria in Rouen, University of Belfast, University of Munchen,
University of Twente, and others), and is the baseline code for at least 20 PhDs
in 2005. It is used for multiple industrial applications by Siemens, Alstom, PSA,
Ferrari, SNECMA, Turbomeca, Air Liquide, MBDA, and so forth. It is also
installed and used on sites by industrial partners of CERFACS such as MBDA,
SNECMA or TURBOMECA.

8.4.1 Application description
The AVBP project started in January 1993 upon an initiative of Michael Rudgyard
and Thilo Schönfeld with the goal of building a modern software tool for
Computational Fluid Dynamics (CFD) within CERFACS of high flexibility,
efficiency, and modularity. Since then, the project has grown rapidly and today
AVBP represents one of the most advanced CFD tools in Europe for the
numerical simulation of unsteady turbulence for reacting flows. AVBP is widely
used both for basic research and applied research of industrial interest. Today,
the AVBP project is comprised of a total of approximately 30 research scientists
and engineers.

As mentioned, AVBP is a parallel CFD code that solves the laminar and turbulent
compressible Navier-Stokes equations in two and three space dimensions on
unstructured and hybrid grids. While initially conceived for steady state flows of
aerodynamics, today the current exclusive area of applications is the modelling
of unsteady (reacting) flows. These activities are strongly related to the rising
importance paid to the understanding of the flow structure and mechanisms
 Chapter 8. Applications on Blue Gene 277

leading to turbulence. The prediction of these unsteady turbulent flows is based
on the Large Eddy Simulation (LES) approach. An Arrhenius law reduced
chemistry model allows investigation of combustion for complex configurations.

The important development of the physical models done at CERFACS was
completed by academic studies carried out at the EM2C lab of Ecole Central
Paris (ECP) and Institut de Mécanique des Fluids de Toulouse (IMFT). Further
significant development has been done at IFP Institut Francais de Pétrole (IFP),
located in Rueil-Malmaison near Paris, following an agreement of joint code
development oriented towards piston engine applications.

The capability to handle structured, unstructured, or hybrid grids is one key
feature of AVBP. With the use of these hybrid grids, where a combination of
several elements of different types is used in the framework of the same mesh,
the advantages of the structured and unstructured grid methodologies are
combined in terms of gridding flexibility and solution accuracy.

In order to handle such arbitrary hybrid grids, the data structure of AVBP
employs a cell-vertex finite-volume approximation. The basic numerical methods
are based on a Lax-Wendroff or a Finite-Element type low-dissipation
Taylor-Galerkin discretization, in combination with a linear-preserving artificial
viscosity model.

AVBP is built upon a modular software library of subroutines that aims to free the
non-specialist user from the need to consider aspects of high performance
computing. A data parallel strategy is used that includes integrated parallel
domain partition and data reordering tools, handles message passing and
includes supporting routines for dynamic memory allocation, routines for parallel
I/O, and iterative methods. AVBP is based on a generalized data structure which
is suitable for structured and unstructured meshes of arbitrary elements. AVBP is
highly portable to most standard platforms including PCs, workstations and
mainframes, and has proven to be efficient on most parallel RISC architectures.

Mesh-related aspects of AVBP are handled by the multi-function
grid-preprocessor HIP. This grid manipulation tool allows various operations
such as generic solution interpolation between two grids, grid cutting or gluing,
grid validation, adaptive local grid refinement, grid extrusion or the creation of
axi-symmetric grids.

The AVBP solver is utilized in the frame of many bilateral industrial collaborations
and national research programs (such as the supersonic COS program and the
joint research and development initiative PRC SNECMA ONERA). On a
European level, AVBP is used in several programs of the running 5th Framework
Program of the EC:

– PRECCINSTA on low NOx studies for gas turbines
278 Unfolding the IBM ̂Blue Gene Solution

– STOPP network on chemistry
– MOLECULES
– DESIRE on gas turbine flows and fluid/structure interaction in liners
– FUELCHIEF on fuel-staged combustion instabilities
– LESSCO2 for piston engines
– In the frame of FP6, AVBP is used in the INTELLECT-DM project

AVBP is used by members of the CFD team flow simulations in the frame of the
demanding summer school program at the Center for Turbulence Research at
Stanford University.

Finally, a hands-on course in MCIP based on AVBP is given for final year
undergraduate students with specialization in CFD in the frame of the series
Mastering of Industrial Codes and Parallelism at the ENSEEIHT engineering
school of the INPT Technical University in Toulouse.

References:

Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O. and
Poinsot, T. High-order methods for DNS and LES of compressible
multi-component reacting flows on fixed and moving grids. J. Comp. Phys.
202, 710-736 (2005).

Faivre, V. and T. Poinsot "Experimental and numerical investigations of jet
active control for combustion applications." J. of Turb. 5: 025 (2004).

Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W.,
Prade, B., Kaufmann, P. et Veynante, D. ''Compressible Large-Eddy
Simulation of turbulent combustion in complex geometry on unstructured
meshes''. Comb. Flame, 137, 489-505 (2004).

Prière, C., Gicquel, L., Kaufmann, P. Krebs, W. et Poinsot T. ''Predictions of
mixing enhancement for jets in Cross Flows '' J. of Turb. 5, 1, 30 (2004).

C. Angelberger, D. Veynante, and F. Egolfopoulos. Large Eddy Simulations
of chemical and acoustic forcing of a premixed dump combustor. Flow,
Turbulence and Combustion, 65(2):205-222, 2000.

J. Schlüter and T. Schönfeld. LES of jets in cross flow and its application to
gas turbine burners. Flow, Turbulence and Combustion, 65(2):177-203,
2000.

J. Schlüter. Axi-symmetric and full 3D LES of swirl flows. International
Journal of Computational Fluid Dynamics, 18(3):235-246, 2004.

For more information on AVBP, see:

http://www.cerfacs.fr/cfd/avbp_code.php
 Chapter 8. Applications on Blue Gene 279

8.4.2 Planning for the application
AVBP is already running on quite a few platforms and its scalability has largely
been proven. The idea behind porting it to Blue Gene/L was to look for a very
large number of processors. Blue Gene/L can have up to 64 K nodes (131072
processors), but in the brief time we had for this project, cutting the mesh in a
load-balanced way limited the experience to 5000 nodes.

A first test case was chosen because it could be compared to previous
experiences going from 16 nodes to 768 nodes. Then a larger test case was run
from 512 to 5120 nodes.

8.4.3 Porting experience
AVBP had already been ported to pSeries Linux. We only had to enter the proper
compiler names and options and the proper libraries to port AVBP to Blue
Gene/L.

The only difficulty we encountered was the node memory size. Blue Gene/L
nodes have 512 MB of memory, and in some cases applications need more than
that. There is not enough memory to do the grid partitioning, so this was
achieved on some other machine (like the front-end ndeo), and the results used
as input files for the different test cases.

Because Blue Gene/L can have so many nodes and is so densely packaged, you
can compensate for the small memory size by using a larger number of nodes.
For example, the first test case needed at least 16 nodes to run in coprocessor
mode, because on a smaller number of nodes it needs more than 512 MB. In
virtual node mode at least 64 processors are needed, since each one only has
256 MB of memory.

8.4.4 Scaling and tuning
Getting the data to the nodes at the beginning of each run actually takes more
and more time as the number of nodes is increased. The same issue occurs at
the end of the run (for collecting data). We provide the MPI trace so you can see
that the operations are serialized; task zero exchanges data with all other tasks,
but one at a time. This only happens once in the job, as opposed to the
numerous iterations (tens of thousands), that represent the main part of the
code. Therefore, you do not spend much time optimizing it. The scaling of the
application shown in Figure 8-19 is computed on the iterative part of the code.

Blue Gene/L can work in two modes: coprocessor mode, and virtual node mode.
With AVBP, the virtual node mode worked quite efficiently, only 1.1 times slower
than the coprocessor mode, even though it used half the number of nodes.
280 Unfolding the IBM ̂Blue Gene Solution

Figure 8-20 shows the change in computation speed as the number of
processors increases. One curve is the coprocessor mode speed, the second
curve is the virtual node mode speed, and the third curve indicates linear
speedup. As you can see, AVBP remains quite close to the third curve even up
to 5120 processors.

Figure 8-19 AVBP test case FULL: Time versus number of processors

Figure 8-21 shows the same information, but in speedup instead of speed.

Figure 8-20 AVBP test case FULL: Speedup versus number of processors

AVBP speed FULL

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000

Number of processors

Ti
m

e
Co

Co Metis
Vn

Vn Metis
Linear

AVBP speedup FULL

0

1000

2000

3000

4000

5000

6000

0 1024 2048 3072 4096 5120

Number of processors

Sp
ee

du
p

Co
Co Metis
Vn
Vn Metis
Linear
 Chapter 8. Applications on Blue Gene 281

The memory needs for task zero were less than 200 MB, for the other tasks,
memory needs decreased as the number of processors increased, from 80 MB
to 24 MB.

Replacing a series of MPI_Sends and MPI_Receives by a collective
MPI_Allreduce increased the performance, but in this particular case there was
not much of a difference. This call is tuned to Blue Gene/L and uses the
collective network, and it should be preferred to one-to-one communications.

Another improvement was done on the 4096 processors run by using a more
optimized grid partitioning, which explains why the speedup is even better than
linear speedup in virtual node mode. A zoom of the time and speedup curves
shows the improvement of the Metis partitioning. But AVBP standard grid
partitioning is also quite good, therefore we had to zoom in on the curves to see
the difference.

In Figure 8-21, you can see the improvement of the Metis partitioning in
coprocessor mode as well as in virtual node mode.

Figure 8-21 AVBP test case FULL speed zoom

In Figure 8-22, you can see the speedup improvement of the Metis partitioning in
coprocessor mode as well as in virtual node mode. In virtual node mode, the
speedup is even better than linear speedup.

The same improvement should be tried on the 5120 processor run, but you might
have to increase the size of the problem because you end up with not enough
work to do in each processor.

AVBP speed FULL (zoom)

70

80

90

4000 4100 4200

Number of processors

Ti
m

e

Co

Co Metis
Vn

Vn Metis
Linear
282 Unfolding the IBM ̂Blue Gene Solution

Figure 8-22 AVBP test case FULL speedup zoom

An MPI trace of message exchanges shows that the application perfectly fits
Blue Gene/L, with little room for improvement through tuning. The black areas in
Figure 8-23 are computation, while the colored areas communication time. This
is the trace for the 512 nodes.

Figure 8-23 MPI trace for message exchange

AVBP speedup FULL (zoom)

3800

3900

4000

4100

4200

4000 4100 4200

Number of processors

Sp
ee

du
p

Co

Co Metis

Vn

Vn Metis

Linear
 Chapter 8. Applications on Blue Gene 283

When you zoom into the trace, you can see the MPI_Allreduce. Most
communications that you can see are MPI_Receives, and you can see that they
take place at the same time in all nodes and that they all end at the same time.
This is a good sign that an application can scale.

Note that sometimes the receive starts at different times on different nodes,
which shows a small imbalance in the workload of the nodes. However, you need
to zoom in significantly in order to see it, as shown in Figure 8-24.

Figure 8-24 Zoom into the mpitrace file

AVBP has shown scaling beyond expectations; at 4096 CPUs, the speedup
remains linear. We would need a larger problem to test with a higher number of
processors. AVBP is perfectly suited to harness the full power of Blue Gene/L.

MPI_Allreduce

Small imbalance in workload

Same ending point
284 Unfolding the IBM ̂Blue Gene Solution

8.5 LS-DYNA
LS-DYNA is finite element software for analyzing large deformation dynamic
response (nonlinear dynamic analysis) of structures in three dimensions.

8.5.1 Introduction
LS-DYNA is used to solve multi-physics problems including solid mechanics,
heat transfer, and fluid dynamics, either as separate phenomena or as coupled
physics, for example, thermal stress or fluid structure interaction.

For details refer to LS-DYNA Keyword Reference Manual, and LS-DYNA Theory
Manual created by the Livermore Software Technology Corporation, available
online at:

http://www.lstc.com

The main LS-DYNA application domains include:

� Automotive crash-worthiness and occupant safety

� Airbags, seatbelts, occupants (dummies), car deformations

� Sheet metal formation

� Metal stamping, hydro forming, forging, multi-stage processes

� Military and defense applications

� Projectile (and armor) penetration problems, explosives, weapon design

� Aerospace industry applications

� Blade containment, bird strike, failure analyses

� Fluid dynamics

8.5.2 Parallel implementation of LS-DYNA
LS-DYNA implements an explicit integration scheme, in which a combined finite
element approach typically performs the contact computation, internal forces
computation, external forces computation, temporal integration, and
configuration update.

In implementing LS-DYNA on a distributed computer, a client/server model is
used in which the server task reads the discretized mesh of the physical domain,
partitions the mesh, distributes it to all the client tasks running on other compute
nodes, and monitors the progress of the computation.

The decomposition methods help to achieve load balance and to minimize the
communication among the partitions. The finite element structure is decomposed
 Chapter 8. Applications on Blue Gene 285

into n parts, in order to have a computation on n processors. The decomposition
algorithm used in this investigation is Recursive Coordinate Bisection (RCB).

After initial data is distributed by the server task, the local element computations
(including contact, internal force, external load, and nodal displacement
calculations) are conducted in each client task as a sequential calculation. The
client tasks exchange information with one another and the server process
during each time step.

8.5.3 Running LS-DYNA on BG/L
Using the mpirun command, described in 4.4, “Scheduling (running) jobs” on
page 77, you can submit LS-DYNA job on Blue Gene/L. The syntax of the job
invocation is given in Example 8-3

Example 8-3 LS-DYNA Invocation Syntax

$ mpirun -np p ls-dyna_mpp_program i=input_file_name, p=pfile_name
or
$ mpirun -np p ls-dyna_mpp_program i=input_file_name

where p is the number of processors,

input_file_name is the LS-DYNA MPP data file (with nodes, elements,
material cards...) and

pfile_name is the optional file which specifies the decomposition method
used to partition the finite element model into subdomains.

Impact of limited memory on compute nodes
The memory on each compute node in the Blue Gene/L is 512 M Bytes or 256 M
Bytes when operating in a co-processor or virtual node modes respectively. As
described in the previous section, server node reads the model before
partitioning it into subdomains. For large models, the memory requirements to
read the entire model can exceed the limited memory available for each task on
a Blue Gene/L node.

LD-DYNA offers a facility to do the decomposition of the finite element structure
separately on a workstation that has more memory. Also, it can be useful to
make the decomposition of the finite element structure separately: the parallel
computer is not tied up while the decomposition is taking place. After the
decomposition is done, a file *.pre is created. The problem will not actually be
run; instead, the code will terminate once the decomposition is achieved.

The server process in LS-DYNA running on Blue Gene/L reads this file and
distributes the partition information to the client tasks. Since the server process
does not have to do the decomposition, the memory requirement is reduced
286 Unfolding the IBM ̂Blue Gene Solution

significantly. A sample pfile to pre-partition the LS-DYNA finite element structure
is given in the following example:

decomposition {
file decomp.pre
numproc 512
method rcb
}

In this example, a pre-decomposition is done on 512 processors (the structure is
decomposed into 512 subdomains but the pre-decomposition run is done on one
processor!). The file containing information on decomposition is created,
decomp.pre, and can be used later for LS-DYNA MPP computations on 1, 2, 4,
8, 16, 32, 64, 128, 256, and 512 processors. The following is an example of a
command for the pre-decomposition:

mpirun -np 1 ls-dyna_mpp_program i=input_file_name,p=pfile_name

After the pre-decomposition is done, the following command to run the LS-DYNA
MPP computation on 256 processors (using the pre-decomposition file!) is given:

mpirun -np 256 ls-dyna_mpp_program i=input_file_name,p=pfile_name

8.5.4 Scalability results for LS-DYNA on Blue Gene/L
A finite element model of an automobile part with one million elements was used
to measure the performance of LS-DYNA. The model requires about 1GB of
memory. Since each Blue Gene/L processor has 256 MB of memory (when
running in VN mode), the model was pre-partitioned using the methods
described in the previous section.

The pre-partitioned model was loaded into the BG/L system and it was run on the
following configurations:

� 32, 64, 128, 256, 512 CPU

� Co-processor and virtual node mode

� POWER4 1.7 GHz cluster with Federation switch

The performance numbers are presented in Table 8-2.
 Chapter 8. Applications on Blue Gene 287

Table 8-2 Performance of LS-DYNA on Blue Gene/L

At 512 CPUs, the scalability drops since the model is too small for 512 CPUs.
Each CPU gets an allocation of only 1512 cells, and the intertask communication
dominates at that point. The performance numbers are plotted in Figure 8-25 on
page 289 and the performance relative to Blue Gene/L running in co-processor
mode is plotted in Figure 8-26 on page 290.

For a 32-CPU configuration, the Blue Gene/L processor starts off at a slowdown
ratio of 1:4 against the POWER4 1.7 GHz, but due to better scaling compared to
POWER, the ratio drops to 3.4 at 256 CPUs.

CPUs

Blue Gene/L - PowerPc - 440 MHz p655 - POWER4
1.7 GHz

Co-processor mode Virtual node mode

Elapsed
time (sec) Speed-up

Elapsed
time (sec) Speed-up

Elapsed
tIme (sec) Speed-up

32 9015 1.0 9336 1.0 2340 1.0

64 4778 1.9 4936 1.9 1490 1.6

128 2672 3.4 2736 3.4 870 2.7

256 1493 6.0 1536 6.1

512 960 9.4 972 9.6
288 Unfolding the IBM ̂Blue Gene Solution

Figure 8-25 Performance of LS-DYNA on BG/L

The performance of LS-DYNA matched and also slightly improved under virtual
node mode compared to co-processor mode, indicating that with two processors
active, the memory and communication subsystems did not did not contribute to
any slowdown.

Medium Size Finite Element Model
1 million elements - 30 milliseconds

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

32.0 64.0 128.0 256.0 512.0

Number of CPUs

E
la

p
se

d
 ti

m
e

 in
 s

e
co

n
d

s

Co-processor Virtual node p655 POWER4 1.7 GHz
 Chapter 8. Applications on Blue Gene 289

Figure 8-26 Relative Performance Blue Gene/L vs. POWER4

Outlook
The LS-DYNA vendor is planning enhancements which may help scalability of
the code on a larger number of CPUs. Also, there are plans to run larger models
and see how the Blue Gene/L system will scale between 512 and 2048 CPUs.

Beyond that, it is not common these days to have an LS-DYNA customer
situation where they routinely solve problems of a size that requires a much
larger than 2048-CPU Blue Gene/L configuration.

Medium Size Finete Element Model
1 million elements - 30 millisecond

0.0

1.0

2.0

3.0

4.0

5.0

32.0 64.0 128.0 256.0 512.0

Number of CPUs

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 B
lu

e
G

en
e/

L

Co-processor Virtual node p655 POWER4 1.9 GHz
290 Unfolding the IBM ̂Blue Gene Solution

8.6 TRACE
TRACE is a research code of the Institute for Chemistry and Dynamics of the
Geosphere (ICG) of the Research Center Jülich (FZJ) in Germany. The ICG is
modeling water flow and solute transport in porous media.

8.6.1 Application description
TRACE calculates 3-dimensional water flow in variably saturated media by
numerically solving the Richards equation, using a finite element method. More
information on TRACE can be found at the following location:

http://www.fz-juelich.de/icg/icg-iv/index.php?index=189

The code was originally parallelized for the Cray T3E, and was later ported to
POWER4. It is currently running on FZJ’s JUMP cluster, a Cluster1600 with 41
frames of 32-way p690 systems connected by the eServer High Performance
Switch (eHPS):

http://jumpdoc.fz-juelich.de/

Given this background, we expect the TRACE code to fit the Blue Gene/L model
very well.

8.6.2 Planning for the application
This version of the code is packaged specifically for benchmarking, so there
were no external dependencies that needed to be considered.

The input data resides in 4 small text files shipped with the source, and when
starting the application, the test cases are selected by specifying the filename as
an argument to the executable. There are three test cases for functional
verification (small.TraceInp, middle.TraceInp and large.TraceInp), and one test
case (maxvar.TraceInp) to run as the actual benchmark. Execution times are of
the order of minutes, and the problem size for the maxvar benchmark can be
adjusted by increasing the number of elements in the X direction.

The small test cases write output data into an output directory, one file per MPI
task. This may pose a problem for thousands of tasks, but since the benchmark
case maxvar.TraceInp does not write these output files, there was no need to
adapt this into a model where the application consolidates the I/O into fewer files.
 Chapter 8. Applications on Blue Gene 291

8.6.3 Porting experience
Porting the application to Blue Gene/L was straightforward. After replacing the
compiler names in the makefile to use the blrts_xl* compilers and linking with
the BG/L runtime libraries, the code could be built and run.

POWER4 run for profiling and timing baseline
To get an estimate of the timings and a flat profile of the application, it was run on
a small POWER4 system using shared memory MPI. The timing for maxvar on a
4-way 1 GHz POWER4 is roughly the following:

X-nodes NPEs NNP InitTime IterTime ExchangeTime OverallTime
--

80 4 1310720 5.971000 53.293000 1.858000 59.264000
160 4 2621440 12.099000 112.297000 3.234000 124.396000
320 4 5242880 24.115000 207.214000 4.363000 231.330000

The gprof flat profile for maxvar.320 (but also consistent among different
numbers of X-nodes) shows the following routines consuming the most CPU
time:

granularity: Each sample hit covers 4 bytes. Time: 230.80 seconds

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 43.6 100.66 100.66 143 703.92 709.31 .__finiteelements_MOD_parallelfemultiply
[5]
 15.0 135.32 34.66 3 11553.33 11827.14
.__finiteelements_MOD_finiteelementsassembledt [6]
 13.8 167.26 31.94 4 7985.00 8245.48 .__finiteelements_MOD_darcyvelocity [7]
 8.7 187.28 20.02 3 6673.33 42685.88 .__finiteelements_MOD_parallelcg [4]
 7.3 204.06 16.78 165160960 0.00 0.00 ._sin [10]

So most of the time is spent in the finiteelements module. To tune the serial
performance, those routines should be investigated, in particular the
parallelfemultiply() subprogram.

Note: This example indicates that the test case needs roughly 3 sec per
element in the X direction on a single 1.0 GHz processor. For the 700 MHz
frequency, we would expect this number to be about 4.3 sec. Ignoring all
architectural differences between POWER4 and BG/L and assuming perfect
scaling, this gives a ballpark number for the expected timing on BG/L.
However, it is not a reliable estimate.
292 Unfolding the IBM ̂Blue Gene Solution

Determining the effect of compiler optimization levels
After getting the code to run on Blue Gene/L, you need to check which set of
compiler options gives the best results. Example 8-4 on page 293 shows timing
results for the maxvar2560 test case on one midplane in CO mode. The
benchmark case uses maxvar.2560 on 512 nodes in CO mode, -qtune=440 for
all cases.

Example 8-4 Effect of optimization levels on runtimes

Compiler options InitTime IterTime ExchangeTime OverallTime

-O2 -qarch=440 5.071000 24.896000 1.455000 29.967000
-O2 -qarch=440d 4.962000 21.531000 1.304000 26.493000
-O3 -strict -qarch=440 4.966000 29.525000 1.755000 34.491000
-O3 -strict -qarch=440d 4.919000 22.295000 1.294000 27.214000
-O3 -qarch=440 4.961000 29.369000 1.831000 34.330000
-O3 -qarch=440d 4.928000 22.253000 1.417000 27.182000
-O5 -qarch=440 4.820000 23.320000 1.560000 28.140000
-O5 -qarch=440d 4.985000 128.760000 2.812000 133.745000

The best overall performance was achieved by using -02, and specifying 440d as
the architecture so the two floating point units of the Blue Gene/L ASIC are used.

Note: Obviously, the sin() intrinsic function is also a candidate for optimization.
We did some tests with linking to the MASS library. This did significantly
reduce the initialization time, but did not drastically change the time needed
for the iterations. In the following scaling tests, the native sin() intrinsic is used.

Note: Plausibility check: 26.493 sec * 512 nodes / 2560 X-nodes = 5.3 sec per
X-node on a single processor. This is pretty close to the ballpark estimate of
4.3 sec made in “POWER4 run for profiling and timing baseline” on page 292.
So the serial performance is in the right order of magnitude.
 Chapter 8. Applications on Blue Gene 293

MPI traces to study communication behavior
To find out which MPI calls the application uses, we ran it with the MPI_Trace
profiling library, which reports the MPI functions called. Running the
maxvar.2560 test case on a single 32way node card results in the following MPI
trace:

elapsed time from clock-cycles using freq = 700.0 MHz

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000
MPI_Comm_rank 1 0.0 0.000
MPI_Send 172 190511.6 0.214
MPI_Recv 172 190511.6 5.656
MPI_Bcast 35 127.5 0.002
MPI_Barrier 3 0.0 0.000
MPI_Allreduce 326 8.0 2.106

MPI task 0 of 32 had the maximum communication time.
total communication time = 7.977 seconds.
total elapsed time = 511.617 seconds.
top of the heap address = 431.398 MBytes.

The overall time spent in communication is less than 2% of the total wall clock
time, and most of it is in standard MPI_Send and MPI_Recv calls. This value
increases slightly for higher numbers of tasks, but even in those cases it is
obvious that the application is compute-bound and communication is efficiently
organized. This is also supported by the graphical MPI_Trace profile shown in
Figure 8-27; white areas represent computational parts, the colored
communication periods are very well synchronized.
294 Unfolding the IBM ̂Blue Gene Solution

Figure 8-27 MPI_Trace profile of TRACE

In Figure 8-27, green represents MPI_Recv, pink is MPI_Send and MPI_Bcast,
blue is MPI_Allreduce, and red is MPI_Barrier.

For scaling and mapping, it is important to understand the communication
patterns. Since the only point-to-point calls are MPI_Send and MPI_Recv, we did
a plot of the communication matrix (by using the PMPI profiling interface to write
out the task IDs of communication partners). The communication pattern varies
depending on the number of tasks which are used, but are always very regular.
Figure 8-28 shows some examples for 32, 64 and 512 tasks. The banded
structure means this is a good candidate for explicit mapping of tasks onto the
torus in order to minimize the Manhattan distances of the point-to-point
communication.
 Chapter 8. Applications on Blue Gene 295

Figure 8-28 Communication matrices for TRACE

Figure 8-28 shows 512 tasks (center of the figure), 64 tasks (lower left inset), 32
tasks (upper right inset).

We did not pursue the mapping optimization, however, since after all,
communication is only a small fraction of the overall TRACE runtime.

Communication coprocessor mode and virtual node mode
Since there is very little communication in this code, and since memory usage
can be adjusted by the number of X-nodes, TRACE is a good candidate for
virtual node mode.

We ran all the test cases in both coprocessor mode and virtual node mode, and it
turned out that virtual node mode works extremely well for TRACE. Refer to
296 Unfolding the IBM ̂Blue Gene Solution

Figure 8-29 and Figure 8-30 for details. Each scaling curve in those plots shows
two variants: one for CO mode and a second curve right above it for VN mode
(on half the number of nodes). Except for very large node counts, VN is only a
few percent points slower than CO mode.

Using the mapping option TXYZ for VN mode to allocate neighboring tasks on
the same physical node (rather than the default XYZT mapping, which spreads
them out) may be beneficial. We did not test this case due to time limitations.

Scaling the application size for fixed processor count
The first scaling test used one midplane (512 nodes), and the problem size was
increased by changing the number of elements in the X direction. Figure 8-29
shows the IterTime+ExchangeTime timings for problem sizes ranging from 2.500
to 40.000 elements in the X direction using communication coprocessor mode
(CO), and twice that value for virtual node mode (VN). The VN curve is only
slightly above the CO mode, so virtual node mode works very well on this code.

Below the two curves we include the InitTime data points, which have been
excluded from the scaling curves because they represent a one-time effort which
should not counterfeit the iterations’ timings for the very short iteration counts
used in the benchmark. Again, VN numbers are slightly above CO numbers.

Figure 8-29 Scaling the TRACE problem size on one midplane
 Chapter 8. Applications on Blue Gene 297

The diagram in Figure 8-29 is running in co-processor node mode and virtual
node mode. Solid lines show IterTime+ExchengeTime, isolated datapoints show
InitTime.

The benchmark case with 50.000 elements in the X direction could not be run on
a single midplane due to memory constraints. This is in agreement with the
estimated memory consumption of this code:

memory usage/task (MB) = #x-nodes / #tasks * 5.84 + 11.5 MB
#x-nodes = #tasks * (memory - 11.5 MB) / 5.84

This estimate had been used for previous benchmarks; for 512 nodes with about
500 MB of usable memory, about 43000 X-nodes can be simulated.

Scaling to large processor counts
The main scaling test for Blue Gene/L is to vary the number of nodes used to
solve a problem of a fixed size. In Figure 8-30, we show this data for problem
sizes of 10000, 20000, 30000, and 40000 elements in the X direction. Plotting
the elapsed time multiplied with the number of nodes should ideally result in a
constant curve for each problem size. The measured performance shows very
good scaling indeed.

Figure 8-30 Scaling the number of tasks for TRACE
298 Unfolding the IBM ̂Blue Gene Solution

Total CPU time for problem sizes (X-nodes) of 10000, 20000, 30000, 40000, and
50.000 (one datapoint only), CP mode, and VN mode with XYZT mapping are
shown.

We used both CO mode and VN mode. Again the VN curves are the ones slightly
above the CO curves. For the runs using four Blue Gene/L racks, VN mode
appears to become more inefficient and departs significantly from CO mode
curves.

In summary, TRACE fits well on the Blue Gene/L system and can be easily
scaled to thousands of processors. However, at high processor counts, it
becomes obvious that the data arrays in the code which are replicated across all
tasks become more and more of a limiting factor. For this reason we were unable
to further increase the problem size: the 50.000 X-elements case could be run on
one rack, but consumed too much memory per node on 2 racks.

To further scale the TRACE code, the replicated arrays would need to be
investigated. If some of them can be distributed instead of replicating them
across all nodes, it should be possible to further scale both the problem sizes
and number of tasks used for the solution.

8.7 CPMD
The CPMD code is based on the original computer code written by Car and
Parrinello5. It was developed first at the IBM Research Zurich laboratory, in
collaboration with many groups worldwide. It is a production code with many
unique features written in FORTRAN 77, and has grown from its original size of
approximately 10,000 lines to currently close to 200,000 lines of code. Since
January 2002, the program has been freely available for non-commercial use6
(see also http://www.cpmd.org). Several thousand registered users in more than
50 countries have compiled and run the code on platforms as diverse as
notebooks and computers at the top of the TOP500 list (www.top500.org).

8.7.1 CPMD description
The basics of the implementation of the Kohn-Sham method using a plane-wave
basis set and pseudopotentials are described in several review articles7, and the
CPMD code follows them closely. All standard gradient-corrected density

5 See: R. Car, M. Parrinello, Phys. Rev. Lett., 1985, 55, 2471-2474
6 See: CPMD V3.9, Copyright IBM Corp. 1990-2003, Copyright MPI fur Festkorperforschung,
Stuttgart, 1997-2001
7 See: D. Marx, J. Hutter, Ab-initio molecular dynamics: Theory and implementation, in: Modern
Methods and Algorithms of Quantum Chemistry, J. Grotendorst (Ed.), NIC Series, Vol. 1, FZ Julich,
Germany, 2000; see also: http://www.fz-juelich.de/nic-series/Volume and references therein.
 Chapter 8. Applications on Blue Gene 299

functionals are supported, and preliminary support for functionals that depend on
the kinetic energy density is available. Pseudopotentials used in CPMD are
either of the norm-conserving or the ultra-soft type8. Norm-conserving
pseudopotentials have been the default method in CPMD, and only some of the
rich functionality has been implemented for ultra-soft pseudopotentials.

The emphasis of CPMD on MD simulations of complex structures and liquids led
to the optimization of the code for large supercells and a single k-point (the k = 0
point) approximation. Many features have therefore only been implemented for
this special case. CPMD has a rich set of features, many of them unique. For a
complete overview the reader is referred to the manual (see CPMD V3.9,
Copyright IBM Corp. 1990-2003, Copyright MPI fur Festkorperforschung
Stuttgart, 1997-2001, see also http://www.cpmd.org). The basic electronic
structure method implemented uses fixed occupation numbers, either within a
spin-restricted or an unrestricted scheme. For systems with variable occupation
number (small gap systems and metals), the free energy functional9 can be used
together with iterative diagonalization methods.

On top of the basic scheme, a fine-grained, shared-memory parallelization was
implemented. The two parallelization methods are independent and can be
mixed. This makes it possible to achieve good performance on distributed
computers with shared memory nodes and several thousands of CPUs, as well
as to extend the size of the systems that can be studied completely ab initio to
several thousand atoms10.

Another parallelization strategy is targeted at the loop over electronic states
needed for the calculation of the charge density and the application of the local
potential. For small- and medium-sized systems, the three-dimensional Fourier
transform (3dFFT) within these loops dominates the computational costs.
Parallelization of the 3dFFT is either limited by load balancing (if a
coarse-grained approach is followed) or by latency (in the case of fine-grain
parallelization). In CPMD, the parallelization of the outer loop over electronic
states can be combined with the parallelization of the 3dFFT. This approach
(called Taskgroups) is especially suited for massively parallel computers with
balanced architectures, as BG/L, if used in combination with optimal mapping.

Some methods implemented in CPMD allow a further level of parallelization.
Methods such as path-integral molecular dynamics or linear response theory are
embarrassingly parallel on the level of the energy calculation. Typically, two to 32
copies of the energy and force calculation can be run in parallel. For these
methods, an efficient use of computers with tens of thousands of CPUs can be
envisaged.

8 See: D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892-7895.
9 (see: A. Alavi, J. Kohanoff, M. Parrinello, D. Frenkel, Phys. Rev. Lett., 1994, 73, 2599-2602)
10 see : J. Hutter and A.Curioni, Parallel Computing, 2004
300 Unfolding the IBM ̂Blue Gene Solution

The coarse-grained, distributed-memory parallelization is driven by the
distribution of wave-function coefficients for all states to all CPUs. Real-space
grids are also distributed, whereas all matrices that do not include a plane-wave
index are replicated (especially overlap matrices). All other arrays are only
distributed if this does not cause additional communications. With this scheme,
all loops communicate over plane waves, especially the ones having an N2M
scaling, where M is the number of plane waves and N the number of atoms,
states or pseudopotential projectors. This scheme explicitly requires a parallel
3dFFT.

Further requirements to optimize the Fourier transforms are used to find the
optimal data distribution. The 3dFFT can be seen as performing the following
steps:

1. Scatter of data C(x, y, z) - c(G).

2. Transformations along direction x.

3. Transformations along direction y.

4. Transformations along direction z.

For a general data distribution in both spaces, each of the steps would include
communication between all processors. The data distribution in CPMD
minimizes the number of communication steps while maintaining optimum load
balancing in both spaces. To achieve this goal, the following requirements have
to be fulfilled:

� Each processor hosts the same number of plane waves.

� All plane waves with common y and z components are located on the same
processor.

� The number of different (y, z) pairs of plane-wave components is the same on
each processor.

� A processor hosts full planes of real-space grid points.

The number of real-space planes is the same on each processor. This scheme
requires only a single data communication step after the first (or before the last)
1D transform. In addition, you can make use of the sparsity of the wave-function
representation still present after the first transform and only communicate
nonzero elements. The various load-balancing requirements are interrelated,
and a heuristic algorithm to achieve near-optimum results is used.

The restriction to full-plane distributions in real space, however, introduces
severe problems in the case of a large number of processors. The number of
planes available is typically about 50 for small systems and 200 to 2000 for large
systems. This restricts the maximum number of processors that can be used
efficiently.
 Chapter 8. Applications on Blue Gene 301

The efficiency of the basic scheme is limited, owing to the following problems:
Global summation of overlap matrices and broadcast of matrices scale as Npe
logNpe and will become predominant for large numbers of processors (Npe).
The calculation of the rotation matrix in the SHAKE/RATTLE11 algorithm is not
parallel and limits the maximum speedup that can be achieved. Replicated
overlap matrices might become a memory bottleneck for large systems on many
processors with small memory.

The maximum number of grid points in a direction limits the maximum number of
processors that can be used efficiently for the 3dFFT. The time required for the
all-to-all communications scales as Npe Latency, downgrading the performance
scaling in the case of communication adapters with relatively high latency.

8.7.2 Application characterization
Since this is an MPI application, we need to ask the following questions:

Q: What level of scalability is typically seen on distributed memory systems
(number of processors)?

A: Results on diverse physical systems having sizes ranging from 100 to 1000
atoms exhibit good scalability to thousands of processors and molecular
dynamics throughputs ranging from 2 to 200 ps/week. Parallel efficiency of ~90%
up to 1000 processors and ~60% up to 4000 processors has been measured.

Q: How much interprocessor communication, and what type of communication is
expected (that is, shmem, mpi_send, reductions, global sum, global array, and
so forth)?

A: This depends on the system size and on the type of parallelization used
(meaning use of taskgroups or not), mainly all-to-all and global reductions.

Q: Is there a typical ratio of computation-to-communication that characterizes
this application?

A: This depends on the system size and on the type of parallelization used. The
ratio for small systems is dominated by 3D-FFT computation; for large systems
(linear algebra) communication becomes dominant. In any case, both
computation and communication are intensive.

11 (See: J. Hutter, M. E. Tuckerman, and M. Parrinello, J. Chem. Phys. 1995, 102, 859-871)

Note: This problem has been solved on BG/L by using a distributed matrix
algorithm for the rotation matrix.
302 Unfolding the IBM ̂Blue Gene Solution

8.7.3 Enablement experience and test results
The tests performed show the performance and scaling data on Blue Gene/L in
comparison with POWER5 on small systems.

Following are the main steps required to enable CPMD to Blue Gene/L:

1. Cleaning of memory allocation to preserve memory alignment.

2. Interface to FFTW-spiral, to use double hummer FFT.

3. Use PowerPC intrinsic for the zeroing of vectors.

4. Use double hummer routines for DGEMM and DCOPY.

5. Implement taskgroup parallelization with optimal mapping.

6. Distribution of overlap matrices and parallelization of orthogonalization.

The optimized code (binary) is distributed to selected customers by IBM Zurich;
full support and distribution of the source code is planned for the general version
for 3Q05.

8.7.4 Benchmark Data
The benchmarks used here to determine scalability were carried out on different
systems. The first is a clustered SMP server, which is an ideal testbed for the
dual-level parallelization scheme. This system consists of 40 IBM pSeries 690
32-way servers (based on the POWER4 1.3 GHz processor), logically partitioned
in 160 8-way SMP nodes, connected via dual-channel colony switches (Phase I
system at HPCx- Daresbury). This results in an aggregate compute power of 5.2
TFlop/s.

The second supercomputer is the novel IBM Blue Gene/L solution, consisting of
1024 dual-processor nodes based on the PowerPC 440 embedded processors
with 700 MHz clock speed, resulting in an aggregate compute power of 5.6
TFlops.

The first system investigated is solid SiC with a supercell containing 216 atoms
(~400 Kohn-Sham states), norm-conserving pseudopotentials and Becke-LYP
functional; this system, which is relatively small, has been chosen to stress the
scaling behavior. Note that the mixed MPI/SMP scheme has been used to scale
out on the p690 system, whereas the taskgroup scheme with optimal mapping
has been used on BG/L.

In Figure 8-31 we illustrate Blue Gene/L scalability, and we compare the other
systems (only as a reference). It is important to realize that the full benefit of Blue
Gene/L becomes apparent when we start looking at 512 processors and beyond.
 Chapter 8. Applications on Blue Gene 303

As previously mentioned, the minimal configuration to get the benefit of fully
optimized MPI is with 512 processors.

Figure 8-31 216 atom SiC supercell scaling (p690 and BG/L)

The p690 1.3 GHz time per step on 8 processors is 40.2 seconds, to be
compared with the 60.5 seconds per step on Blue Gene/L for the same number
of processors. It is evident that in spite of a processor that is ~ 1.8 times slower
(in term of peak spread), the sustained speed is only 1.5 slower, mainly due a
better memory bandwidth.

Moreover, due to the more balanced architecture that ensures a better scaling,
BG/L outperforms the clustered p690 system for more than 128 processors.

Figure 8-32, on the other hand, shows a larger system that is well suited for Blue
Gene/L. This case corresponds to a complex liquid/vapor interface of methanol
with 1 Pd atom. The system consists of more than 1000 atoms, and a 140 Ry
plane-wave cutoff was used together with the PBE functional.

The computational box was an orthorhombic cell with a real-space mesh of
dimensions 768x160x160. In this case, Figure 8-32 shows a 90% parallel
efficiency up to 1024 processors and up to 50% parallel efficiency up to 4096
processors.

0

10

20

30

40

50

60

70

8 16 32 64 128 256 512 1024
Number of Processors

Ti
m

e
pe

r s
te

p(
s)

BG/L
p690
304 Unfolding the IBM ̂Blue Gene Solution

Figure 8-32 Methanol liquid/vapor interface + Pd atom on BG/L

The Car and Parrinello method has been applied to many different simulations in
the realm of semi-conductor solid-state physics. Its combination of accuracy and
flexibility allowed the method to have a large impact in many different fields, most
noticeably in liquids and solutions, catalysis and enzymatic reactions.

Another significant reason for its success is that the CP-MD method is well
adapted for parallel computer platforms. Combining the increase in computer
power (about a factor of 300 in the past 10 years) with algorithmic improvements
allowed pushing the limits of simulations to larger systems and longer time
scales. These results make us confident that the CP-MD method will continue to
play an important role in ab initio molecular-dynamics simulations in the future.

Most noticeably for systems ranging up to 1000 atoms and in connection with
multi-scale modeling, both for length and time scales, CP-MD will remain a
leading method. It will have a continuing impact among others in materials
science, simulation of liquids and biological systems.
 Chapter 8. Applications on Blue Gene 305

8.8 WRF
WRF, or Weather and Research Forecast Model, is a weather code that is
increasingly being used in climate modeling and weather forecasting. The code
is the successor model to the popular weather code MM5 and comes from the
NCAR - MMM division. The WRF Model is a next-generation mesocale
numerical weather prediction system designed to serve both operational
forecasting and atmospheric research needs.

The WRF development is a collaborative partnership, principally among the
National Center for Atmospheric Research (NCAR), the National Oceanic and
Atmospheric Administration (NOAA), the National Centers for Environmental
Prediction (NCEP) and the Forecast Systems Laboratory (FSL), the Air Force
Weather Agency (AFWA), the Naval Research Laboratory, Oklahoma University,
and the Federal Aviation Administration (FAA).

8.8.1 Application description
The latest version of the model is Version 2.0, and the most recent release of
WRF V2.0.3.1 (December 2004) was used for performing the benchmark runs.
WRF allows researchers the ability to conduct simulations reflecting either real
data or idealized configurations. It features multiple dynamical cores, a
3-dimensional variational (3DVAR) data assimilation system, and a software
architecture allowing for computational parallelism and system extensibility. WRF
is suitable for a broad spectrum of applications across scales ranging from
meters to thousands of kilometers.

Performance is model speed, ignoring I/O and initialization cost, directly
measured as the average cost per time step over a representative period of
model integration, and is presented as normalized floating-point rate and as
simulation speed. The benchmarks are intended to provide a means for
comparing the performance of different architectures and for comparing WRF
computational performance and scaling with other models.

A representative period of model integration should be the smallest period that:

1. Includes all different types of time-step in the proportions they will occur for
any length simulation

2. Provides a number of sequences of the complete set of time steps to
reasonably represent performance variability stemming from varying states of
the atmosphere being simulated and operational variability of the computer
system itself

3. Steps far enough into a simulation to be considered spun-up

Floating-point rate provides a measure of efficiency relative to the theoretical
peak capability of a computing system. It is the average number of floating-point
306 Unfolding the IBM ̂Blue Gene Solution

operations per time step divided by the average number of seconds per time
step. Average floating-point operations per time step is determined by executing
the test case over the integration period, counting the number of operations
using the vendor’s hardware, and then dividing by the number of time steps in
the integration period. The minimum over all systems measured is used for
determining floating-point rate. Using a minimum avoids overstating performance
and efficiency of the WRF code. The average time per time step is the sum of the
times for each time step in the integration period divided by the number of time
steps.

Scaling is the ratio of increase in simulation speed (or floating-point rate) to the
increase in the number of parallel processes. A parallel process is the
independent variable of this experiment. It is the unit of parallelism that is scaled
up or down when running WRF on a parallel system.

WRF is currently in operational use at NCEP. For detailed information on this
application, see:

http://www.wrf-model.org/index.php

8.8.2 Characteristics
The WRF model (and WRF 3DVAR) is written in FORTRAN (what many refer to
as FORTRAN 90). A software layer, RSL, sits between WRF and the MPI
interface and is written in C. There are also ancillary programs that are written in
C to perform file parsing and file construction, both of which are required for
default building of the WRF modeling code.

Additionally, the WRF build mechanism uses several scripting languages
including perl (to handle various tasks such as the code browser designed by
Brian Fiedler), Cshell, and Bourne shell. The traditional UNIX text/file processing
utilities are used: make, M4, sed, and awk. There are several modes of build of
WRF: MPI, OpenMP, and both MPI and OpenMP.

8.8.3 Planning for the application
The purpose of the benchmark effort was to port the WRF application to Blue
Gene/L and perform test runs to show computational performance and scalability
of the WRF model on the Blue Gene/L system. The code could be run with MPI
and OpenMP. However, OpenMP is not supported on Blue Gene/L, and hence
the MPI build of WRF was used on Blue Gene.

The code is a mix of FORTRAN and C languages, which in turn results in a
requirement for FORTRAN and C compilers for building the code. The code uses
 Chapter 8. Applications on Blue Gene 307

the NETCDF library, which has to be downloaded from the following link and built
before attempting to build WRF:

http://my.unidata.ucar.edu/content/software/netcdf/index.html

8.8.4 Porting experience (depending on licensing)
The code has been ported to AIX systems, but it has not been ported to Power
on Linux, which is recommended before attempting on Blue Gene/L. The porting
to Blue Gene is quite straightforward. You need to ensure that cross-compilation
is enabled in configuration files, since configure is used for the builds of both
Netcdf and WRF. You must also point to the right compiler and compiler options.

Building the NETCDF library
NetCDF, or network Common Data Form, is an interface for array-oriented data
access and a library that provides an implementation of the interface. The
netCDF library also defines a machine-independent format for representing
scientific data. Together the interface, library, and format support the creation,
access, and sharing of scientific data.

A configure script is used for the build process, which will create
system-dependent environment variables to be used for compilation like the
compilers. Since we are cross-compiling, the cross-compile option should be set
to yes in configure.

When configure is run, it creates a file, macros.make, which can be modified, if
needed after configuring. It is recommended to use the same compilers for
compiling netcdf as are used for building WRF. Example 8-5 shows a script that
could be used for setting the environment variables when configuring your
environment for compiling the code.

Example 8-5 A script to set environment variables for NETCDF build

#! /bin/ksh
export CC='blrts_xlc'
export CPPFLAGS='-D_POSIX_SOURCE -DNDEBUG -D_ALL_SOURCE'
export FC=blrts_xlf
export F90=blrts_xlf90
export CXX=blrts_xlC
export CFLAGS="-qarch=440"
export FFLAGS="-O2 -qarch=440"
export F90FLAGS="$FFLAGS -qsuffix=f=f90"
./configure --prefix=/bgl/sheeba/lib/NETCDF

Variable description for Example 8-5:

CC C compiler
308 Unfolding the IBM ̂Blue Gene Solution

FC FORTRAN compiler
F90 FORTRAN 90 compiler
CXX C++ compiler
CFLAGS C compiler flags
CPPFLAGS C preprocessor options
FFLAGS FORTRAN compiler flags
F90 fLAGS FORTRAN 90 compiler flags
CXXFLAGS C++ compiler flags

Check the macros.make file to verify that all settings are for Blue Gene, and
modify if needed. Normally while running configure, you would get a error
message if it was not successful. Thereafter, issuing the commands make and
make install will build and install the netcdf library in the directory that was
passed by prefix.

Building WRF
A configure.defaults file in the arch directory specifies the environment variables
to be set for building WRF. This file was edited to introduce the new architecture,
BG for Blue Gene system, and the environments corresponding to RSL and
RSL_LITE were modified. The author used the AIX build options for POWER4,
and this was modified to point to the right compilers and options for Blue Gene.
Some of the points to keep in mind during build include:

� WRF provides a provides a provision for cross-compilation, and this option
could be known from reading the configure script. (Remember, we are
cross-compiling, and uname does not work and is not usable here.) Following
are the environment variables that are to be set prior to building WRF:

export WRF_OS=BG
export WRF_MCH = 440
export NETCDF=/bgl/sheeba/lib/NETCDF_xlc

� The -traditional flag is to be added to cpp flags if the preprocessor used is
/lib/cpp, which comes with the GNU compiler. If you are using the
preprocessor cpp that comes with the xlf compiler, there is no need to use this
flag.

� Since there are a number of math function calls, for performance
improvement, the code was linked with the mass libraries, libmass and
libmassv.

� To get over the multiple definition error when linking with libmass, libmassv,
add the flag for linking: -Wl,--allow-multiple-definition.

To profile the mpi trace library, we used libmpitrace_c.a from Bob Walkup (IBM
Research). libmpitrace_f does not produce mpi_profiles because WRF is a mix
of FORTRAN and C and some of the C codes make MPI calls. So it has to be
linked with libmpitrace_c.a to generate the MPI trace files.
 Chapter 8. Applications on Blue Gene 309

8.8.5 Scaling and tuning (optimization)
The benchmark was run on an IBM eServer pSeries 655 cluster and on the
current Blue Gene/L test configuration.

The pSeries 655 cluster configuration used for benchmarking is listed in
Table 8-3. The test case tested was em_real and was downloaded from the
following location:

http://box.mmm.ucar.edu/wrf/bench

This test case was performed at 6-hour intervals, 48 hours total, on a
425x300x34 grid.

Table 8-3 The POWER4 cluster characteristics

Compiler optimization flags
We started off the WRF build with -O2 -qarch=440, and then tried -O2
-qarch=440d, which did not have any performance impact. This is expected,
since the 440d effect comes only with -O3 or higher optimization levels. Then
-O3 -qarch=440 and -O3 -qarch=440d were also attempted. We noted that -O3
gave about a 4% performance boost, but there was no additional advantage in
using 440d. So all performance runs were made with the compiler options -O3
-qarch=440.

For further optimization you can use other compiler flags, like O4, O5, qhot. For
details about the compiler options see 5.2, “XL compilers” on page 86.

System IBM eServer pSeries

Processor POWER4@ 1.7 GHZ

Number of nodes 32

Number of CPUs per node 8

Total number of CPUs 256

Interconnect IBM eServer pSeries High Perf. Switch

Memory 18GB per node

Large pages 50% (8 GB)

Kernel 64 bit

Operating system AIX 5L V5.2

Compiler XL FORTRAN V8.1.1.6

File system GPFS 2.2
310 Unfolding the IBM ̂Blue Gene Solution

On p655, the code was compiled with the following options:

-O3 -qstrict -qarch=pwr4 -qtune=pwr4

Results and discussion
Figure 8-33 and Figure 8-34 summarize the results obtained on Blue Gene and
p655.

Figure 8-33 WRF GFLops performance

The performance obtained on Blue Gene is about 2.7 to 2.8 times that of
corresponding GFlops for p655. This is significant, considering that p655
performance with High Performance switch interconnect and clock speed is
1.7GHz.

WRF performance on other architectures has been reported by NCAR and can
be viewed at:

http://www.mmm.ucar.edu/wrf/WG2/bench/wrf-perf.bmp

WRF Performance (GFlops)

0
20

40

60
80

100
120

140

0 200 400 600 800 1000 1200

Processors

G
Fl

op
s p655@1.7GHz

BG/L@0.7GHz CO

BG/L@0.7GHz VN

Important: The performance for virtual node mode runs gave almost the
same performance as those for coprocessor mode runs. This is significant in
that we get almost the same performance with half the number of nodes.
 Chapter 8. Applications on Blue Gene 311

Figure 8-34 WRF Scalability - GFlops per Processor

Figure 8-34 shows the plot of GFlops per processor versus the number of
processors used for each run. A flat curve means linear scaling. The
performance on Blue Gene shows good scaling up to 1024 processors. The
change in performance is more than 50% at the 1024 processor run.

This decrease in performance is not due to communication. MPI trace files show
that the communication time is actually becoming less. This is from the extra
work that is being done when running a large number of processors on a
relatively small grid size.

Here the input test case is for a 425 X 300 domain, and when it is over 1024
processors, domain decomposition results in the local domain becoming very
small (on an order of about a 13 x 10 if it is a square grid for processors
assignment) and each domain has a overlap region around it and processors in
this region do the same processing. These domains get to be very large in
number and the overlap region grows with a large number processor run,
resulting in each processor doing an extra job in this overlapped region.

Recommendation to improve performance
It is recommended that you specify the processors in the x and y directions in the
input file; otherwise, the allocation of processors will most probably be in a

WRF Performance (GFlops/Processor)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200

Processors

G
Fl

op
s/

pr
oc

es
so

r

p655@1.7GHz
BG/L@0.7GHz
312 Unfolding the IBM ̂Blue Gene Solution

square shape. This will also help in having a rectangular shape and to define a
longer stride one, thus reducing bad stride edge. Some of these runs have been
done and are summarized in Table 8-4. We obtained about 5% improvement in
specifying a 16 x 64 grid for nproc_x and nproc_y, in the case of a 1024
processor run.

Figure 8-35 shows the elapsed time for varying the number of processor runs.
The elapsed time includes the time of initialization and I/O.

Figure 8-35 WRF elapsed time performance

Table 8-4 Effect of parallel I/O on WRF elapsed time

WRF has an option to turn on quilting in its input. Details can be obtained from:

http://www.mmm.ucar.edu/wrf/WG2/software_2.0/IOAPI.doc

This will result in one compute node doing all I/O. Other parallel architectures
may benefit from this option of a dedicated compute node for I/O. This will result
in a single processor doing all I/O, and this could be a problem on Blue Gene/L
since we have limited memory for each node.

Number of
processors

Elapsed time (sec)
with default I/O

Elapsed time (sec)
with parallel I/O

512 138.973 120.491

1024 115.422 110.564

WRF Performance (Elapsed Time)

0

200

400

600

800

1000

1200

0 500 1000 1500

Processors

El
ap

se
d

Ti
m

e
(S

ec
)

p655@1.7GHz
BG/L@0.7GHz
 Chapter 8. Applications on Blue Gene 313

However, parallelized I/O will definitely improve the overall real time
performance. In this case, all MPI tasks perform I/O, and each task will write its
chunk of restart and history files. This could be enabled by changing a few
variables in the input file for writing the netcdf file. History and Restart write
options are changed to 102 instead of 2. Figure 8-36 shows the effect of
parallelizing the I/O among all MPI tasks.

Figure 8-36 WRF - Effect of parallelizing I/O

Recommendation for further I/O performance improvement
When larger test cases are tried and for increased I/O, the parallel I/O must be
tried. In addition to having each task perform I/O, when it comes to writing to a
GPFS file system, these writes by each task could be changed such that each
task writes to a different directory. This will produce a significant improvement in
I/O performance and thus on elapsed time, when the file system is GPFS.

Effect of changing the runtime environment variables
We changed several MPI runtime variables, and these made a difference to the
run times (see Table 8-5).

Table 8-5 Results from varying the run time environment

WRF Performance (Effect of Parallel IO)

0
50

100
150
200
250
300
350
400
450
500

0 500 1000 1500

Processors

El
ap

se
d

Ti
m

e
(S

ec
)

BG/L
BG/L parallel IO

#procs Default MPI settings Varying Eager LImit to 1000 Varying nproc in x & y

1024 116579.9315 120982.3812 127077.1142 (16 x 64)

1024 VN, TXYZ 117296.6581
314 Unfolding the IBM ̂Blue Gene Solution

In Table 8-5, TXYZ means MPI_MAPPING=TXYZ, EAGER means MPI EAGER
LIMIT, and VN means virtual node mode.

� For virtual node mode runs, changing the mapping gave a performance boost
of about 4% when TXYZ mapping was used for the runs.

� Reducing the Eager limit to 1000 also gave about 4% in performance
improvement. Reducing the Eager limit further down to 450 did not show any
difference in performance (the default Eager limit is 10000).

The RSL build of WRF has a limit of 1024 on the maximum number of processes
that could be used for the runs. RSL_LITE is an improvement over the RSL
version build of the code, and does not have this limit. The RSL build of WRF
was also attempted and the following graphs summarize the results obtained on
four racks of Blue Gene/L.

Figure 8-37 WRF performance (RSL_LITE build)

512 68732.19456 74469.75251 (8X64)

512 VN, TXYZ 69659.4354

256 39446.74395 41186.46319 (8x32)

256 VN, TXYZ 38441.41202

#procs Default MPI settings Varying Eager LImit to 1000 Varying nproc in x & y

WRF Performance (RSL_LITE build)

0

50

100

150

200

250

0 2000 4000 6000

Processors

G
Fl

op
s

BG/L VN
BG/L CO
 Chapter 8. Applications on Blue Gene 315

Figure 8-37 shows the GFlops performance for varying the number of
processors. The code shows scaling up to a 4096 processor run; keep in mind
that this is for a small problem/domain size of 425 X 300.

Figure 8-38 WRF, RSL_LITE build GFlops per processor performance

Figure 8-38 shows the GFlops per processor performance from WRF runs for
varying the number of processors, showing scaling up to 4096 cpus.

Detailed Information on WRF benchmarking can be obtained from:

http://www.mmm.ucar.edu/wrf/WG2/bench/wrf_benchmark_page.htm#_Toc97632037

8.9 Local Model
Local Model (LM) is a weather forecast model, operationally used by several
European weather services, which constitute the Consortium for Small-Scale
Modeling (COSMO).

8.9.1 Description
The Consortium for Small-Scale Modeling was formed in October 1998 at the
regular annual DWD/MeteoSwiss meeting. The following national meteorological
services are its current members:

� DWD: Deutscher Wetterdienst, Offenbach, Germany

� MeteoSwiss: MeteoSchweiz, Zuerich, Switzerland

WRF GFlops per processor (RSL_LITE build)

0

50

100

150

200

0 2000 4000 6000

Processors

G
Fl

op
s

pe
r p

ro
ce

ss
or

BG/L VN
BG/L CO
316 Unfolding the IBM ̂Blue Gene Solution

� UGM: Ufficio Generale per la Meteorologia, Roma®, Italy

� HNMS: the Hellenic National Meteorological Service, Athens, Greece

� IMGW: the Institute of Meteorology and Water Management, Warsaw, Poland

Additionally, the following regional and military services within the member states
are participating:

� ARPA-SMR: il Servizio Meteorologico Regionale di ARPA, Bologna, Italy

� AWGeophys: Amt fuer Wehrgeophysik, Traben-Trarbach, Germany

The principal objective of COSMO is the creation of a meso-to-micro scale
prediction and simulation system. This system, with LM as its basic model
component, is intended to be used as a flexible tool for specific tasks of weather
services as well as for various scientific applications on a broad range of spatial
scales.

Current operational NWP-models operate on the hydrostatic scales of motion
with grid spacings down to about 15 km. Thus, they lack the spatial resolution
required to capture explicitly all small-scale, short-duration severe weather
events and significant flow systems, which are related to the non-hydrostatic
scales of motion. The LM is designed for just these spatial scales, where
non-hydrostatic effects play an essential role.

From a mathematical point of view, LM (as any regional weather forecast model)
is an initial boundary value problem. This technical term describes that the initial
data are given on the whole computational domain at time step 0, and on the
boundary of the computational domain for all subsequent time steps.

As this is a numerical forecast model, time step 0 describes the weather as of
today, and the subsequent time steps are in the future. Hence, another forecast
model is needed to get the boundary data in the future. In operational weather
forecasting, a so-called global model (GME from DWD, IFS from ECMWF)
provides this information. A global model predicts for the whole globe, hence
there are no boundaries to take care of. However, the global model uses only a
coarse grid. Therefore, the Local Model is still needed to provide the fine-grained
weather information.

The benchmark that was actually run on the Blue Gene/L system was
LM_RAPS_3.0, which consists of a subset of LM version 3.10 of the COSMO
consortium and the interpolation program INT2LM, which interpolates data from
a coarse grid model (GME from DWD, IFS from ECMWF or a coarse grid LM) to
the (fine) LM-grid.

Both programs are parallelized for computers with distributed memory using the
Message Passing Interface (MPI) as a parallel library. The main interest of the
 Chapter 8. Applications on Blue Gene 317

benchmark focuses on the LM. In the RAPS benchmark, INT2LM is only a utility
program to create the necessary LM initial and boundary data on a fine grid.

The initial data provided is the output of a GME global forecast for March 1,
2004, starting at 12:00 UTC for 12 hours on a grid with a 60km mesh size. The
interpolation routine INT2LM restricts these data and interpolates them to a finer
grid with a mesh size of 7km, covering a rectangular subset of Europe. LM
forecasts the weather for March 1, 2004, 12:00-24:00 UTC in the interior of this
subset of Europe.

8.9.2 Characteristics
As mentioned before, LM_RAPS_3.0 operates on a rectangular subset of
Europe. The parallelization is done by further subdividing this rectangular subset
both in an East-West and in a North-South direction. This leads to a
two-dimensional array of smaller rectangles. Each MPI task takes care of one of
these sub-domains.

As with most other local area models, each time step divides into a so-called
dynamics and a so-called physics part as described here:

� The dynamics part models the fluid dynamics of the air (computation of wind
speed and direction) and the transport (advection) of the other observables
like temperature and humidity with the wind. This includes the computation of
various differences, with the operands sometimes residing in the memory of
different, but neighboring, MPI tasks. The latter is handled in the usual way by
providing layers of extra memory around each rectangle (sometimes called
halo) and exchanging these layers with neighboring MPI tasks when needed.

� The physics part handles various physical processes like radiation (from the
sun), reflection of light at the clouds, and precipitation. In the model
simplification, all these physical processes deal only with the vertical column
above one single point on the earth’s surface. Hence, all corresponding
computations stay entirely within one MPI task and little or no communication
is need in this part.

At least once per each forecast hour, new initial and boundary dates have to be
read in from a file and the resulting forecast of the previous time steps has to be
written to disk. Reading and writing are done by one MPI task. Hence there are
broadcast, gather, and scatter operations to get the information from and to the
other MPI tasks that do not do I/O.

Unlike many other weather forecast codes, LM does not do any FFTs. Hence
there is no need for all-to-all MPI communication. The FFTs are usually used for
a fast solution of a Helmholtz equation that originates from an implicit time
stepping scheme. LM does the time stepping mostly explicitly, using a much
318 Unfolding the IBM ̂Blue Gene Solution

smaller time step (so-called micro-stepping) for the fluid dynamics part to comply
with the Courant-Friedrich-Lax condition.

Given the previous reasons, you should expect the MPI communication to be
dominated by nearest neighbor exchanges, followed by gather/scatter-like
communication patterns. This hypothesis was tested by running comparison runs
on a cluster of 8-way p655+ nodes connected with a High Performance Switch.

The MPI communication was timed with a variant of the ACTC tool MP_tracer,
which uses the PMPI interface to intercept the MPI calls. For a run on a 10*16
array of sub-domains, the MPI timing data for MPI task 0 (dealing with the
sub-domain at the south-west corner) is shown in Example 8-6.

Example 8-6 MPI timing data for MPI task 0

--
MPI Routine #calls avg. bytes time(sec)
--
MPI_Comm_size 1305 0.0 0.004
MPI_Comm_rank 212 0.0 0.000
MPI_Send 8694 406394.7 2.555
MPI_Recv 16896 367888.0 3.998
MPI_Sendrecv 51876 123767.7 191.401
MPI_Probe 10494 0.0 2.572
MPI_Waitall 1 0.0 0.000
MPI_Bcast 4467 53.5 3.987
MPI_Barrier 314 0.0 0.410
MPI_Gather 7274 12620.6 10.181
MPI_Scatter 4071 12780.0 1.672
MPI_Allgather 29 4.0 0.070
MPI_Reduce 219 71.9 3.489
MPI_Allreduce 1125 315.3 26.432
--
total communication time = 246.770 seconds.
total elapsed time = 1285.903 seconds.
user cpu time = 1239.480 seconds.
system time = 22.420 seconds.
maximum memory size = 279284 KBytes.

The data in this example clearly shows that the bulk of the communication time is
going into MPI_Sendrecv, which is handling the nearest neighbor exchanges.
Except for some MPI_Sends and MPI_Recvs with very large messages (which
are part of the I/O part), the remaining communication pattern is tree-based
algorithms (MPI_Bcast, MPI_Gather, MPI_Scatter, MPI_Allgather, MPI_Reduce
and MPI_Allreduce).
 Chapter 8. Applications on Blue Gene 319

With these tree-based communication patterns expected to run well on the tree
network from BG/L, and the nearest neighbor exchanges being well suited for the
torus network, LM looked like an almost ideal candidate for porting to BG/L.

8.9.3 Planning for LM
Given the situation as detailed, few problems were expected for the port and the
execution performance. The application is already MPI parallel, with a
communication profile that can be expected to be well suited for BG/L.

Only the I/O part gave rise to some consideration, since the only available file
system on the benchmark system was NFS-mounted. Also, collecting the output
on one MPI task and doing a serial I/O from this task clearly will become a
performance inhibitor for large numbers of MPI tasks.

But the I/O part contains not only the actual I/O operation, but also translation to
and from a special binary output format called GRIB format. GRIB is a standard
from the World Meteorological Organization (WMO), which is a United Nations
specialized agency. This translation cannot be easily parallelized, so the I/O part
was left as is.

8.9.4 Porting experience
LM is available on several platforms, including AIX and Linux. Porting LM to
BG/L proved to be mainly a mix-and-match of AIX and Linux features, in exactly
the same way as for a port to Linux on Power.

The first step in porting LM was to port the GRIB library that is doing the I/O and
the handling of the GRIB format. This library is written partly in C and partly in
FORTRAN. So the porting had to cover inter-language calls from FORTRAN to
C. This was essentially done by adding the bolded lines (marked with +) to the
file lm_raps_3.0/grib1_new/include/fortran_c.h (see Example 8-7).

Example 8-7 Modifying the definition for BG/L

#ifdef __linux__
undef FORTRAN_UPPERCASE
define FORTRAN_UNDERLINE

#endif
+#ifdef __plinux__
+ # undef FORTRAN_UNDERLINE
+ # undef FORTRAN_UPPERCASE
+#endif
#ifdef _CRAY

 # undef FORTRAN_UNDERLINE
 # define FORTRAN_UPPERCASE
320 Unfolding the IBM ̂Blue Gene Solution

#endif
#ifdef _AIX

 # undef FORTRAN_UNDERLINE
 # undef FORTRAN_UPPERCASE

#endif

In other words, a __plinux__ flavor was added, which took the same contents as
the _AIX flavor. It was called __plinux__ so it would be the same for a port to
Linux on Power. Of course -WF,-D_AIX had to be replaced by -WF,-D__plinux__
for the FORTRAN compiler flags, and a similar change was made for C.

In several places in the code, a defined(__plinux__) had to be added where
appropriate, as in the Example 8-8.

Example 8-8 Modifying the source code for __plinux__ awareness

#if defined(_AIX)
 #include <sys/statvfs.h>
 #define FSTYPSZ 16
! #elif defined(__linux__) || defined(__plinux__)
 #include <sys/vfs.h>
 #else
 #include <sys/fstyp.h>
 #endif

Note that here, and for other situations dependent on the operating system (as
opposed to dependency on xl compilers), __plinux__ takes the same branch as
__linux__.

There was one (transient) code addition. In the early stage, the I/O
implementation of BG/L was not complete and a statfs was missing. So a dummy
statfs was added (Example 8-9) to the GRIB library, which occasionally prints a
reminder that it should be removed when no longer needed.

Example 8-9 Workaround for missing statfs() in BG/L

/* this is a work around for a missing statfs function on BG/L */

int dummy_statfs_use_counter = 0;

int statfs (const char *__file, struct statfs *__buf) {
 __buf->f_type = 0x6969; /* we are only using NFS mounted files */
 if (!(++dummy_statfs_use_counter % 10)) {
 fprintf(stderr,

 "This is a reminder that there is a work around for statfs\n");
 }
 return(0);
 Chapter 8. Applications on Blue Gene 321

}

Porting the main code (both for INT2LM and LM) revealed a bug that was already
fixed in the operational version of LM. The fix did not make it to the benchmark
version LM_RAPS_3.0. Apart from that, no software changes were needed.

The scripts to run LM had to be adapted. All of these changes were obvious and
most of them were transient in nature (due to future developments for BG/L).
Therefore, they are not detailed here.

The ported LM was run on BG/L and the results were verified using a comparison
program (diff_result) provided by DWD, which compares mean pressure values
to those from a reference run on the operational system (IBM POWER3™) in
Offenbach, Germany. The LM port as described here passed this test.

8.9.5 Scaling and tuning
The setup with INT2LM generating the input files for LM via interpolation allowed
for a free choice of grid sizes. The current investigation was restricted to those
cases, where reference results were provided to allow for an easy correctness
check. The smallest of these predefined grids had 109*109*20 grid points. This
grid was used as a setup for testing various compiler options.

The first runs were done with compiler options -O3 -qstrict -qarch=440
-qtune=440 in co-processor mode. Table 8-6 shows a comparison with current
POWER4 and POWER5 nodes. The Blue Gene system was a DD2 prototype
running at 0.7 GHz, based in IBM at the Thomas Watson Research Center.

Table 8-6 Test results for LM on POWER4, POWER5, and Blue Gene

Clock rate
(GHz)

of Procs Time - sec
(LM)

Mflop/s Peak
Mflop/s

Ratio Comments

1.7 (p655+) 8 282.40 3610.96 55705.60 0.0648

1.9 (p5-570) 8 212.32 4802.82 62259.20 0.0771

0.7 (BG/L) 32 338.49 3012.60 45875.20 0.0657 (1)

0.7 (BG/L) 64 194.71 5237.20 91750.40 0.0571 (2)

0.7 (BG/L) 128 113.42 8990.79 183500.80 0.0490 (3)

0.7 (BG/L) 32 282.49 3609.81 45875.20 0.0787 (4)

0.7 (BG/L) 64 162.00 6294.66 91750.40 0.0786 (5)

0.7 (BG/L) 128 96.38 10580.36 183500.80 0.8000 (6)
322 Unfolding the IBM ̂Blue Gene Solution

Comments:
1. without libmass, -qarch=440
2. without libmass, -qarch=440
3. without libmass, -qarch=440
4. with libmass, -qarch=440
5. with libmass, -qarch=440
6. with libmass, -qarch=440

Restricting the optimization to -O3 -qstrict is expected to downgrade the
performance. This decision was taken based on experience from the customer
DWD. Executables generated with optimization level -O5 were found to be only a
few percentage points faster, but sometimes produced wrong results.

The Mflop/s rate was measured on POWER4 with a hardware performance
monitor (the ACTC tool hpmcount). On POWER5 and Blue Gene, it was
assumed that the same number of floating point operations were performed and
the POWER4 Mflop/s rate was extrapolated by multiplication with the ratio of
execution times.

The peak performance on POWER4 and POWER5 was simply four times the
clock rate, assuming that the performance cannot be faster than with both
floating point units executing an FMA instruction. With the execution pipeline
properly filled, each FMA produces one result per cycle, which is the result of two
floating point operations, a multiply operation and an add operation. Two floating
point units, each executing two operations at every cycle, provide four flops per
cycle, hence the factor four.

The peak performance for Blue Gene in Table 8-6 takes into account that the
application is run in co-processor mode. Hence, only one CPU is doing actual
computations. Also, -q440 prevents the use of the double floating point unit. So
the peak performance per CPU was taken to be only twice the clock rate.

Given this definition of the peak performance, LM operates at roughly the same
percentage of the peak performance as on POWER4 and POWER5.

Table 8-6 also shows that the mass lib is giving a significant performance boost.
It should be noted that the POWER4 and POWER5 numbers include the
corresponding version of the mass lib. Therefore, a fair comparison should
compare the POWER4 and POWER5 number to the timings with use of the
mass lib.

Employing the double floating point unit proved to be a complicated task. The
best result was obtained by compiling just one subroutine (turb_diff) with -qhot
-qarch=440d. This routine is known to account for 10% to 20% of the total time
(depending on the grid size). This routine is also far from being a simple kernel. It
is therefore a challenging task to look at the assembly output or to apply single
 Chapter 8. Applications on Blue Gene 323

node tuning techniques as outlined earlier. The improvement was about 1% of
the total execution time.

The grid size of 109*109*20 can be only considered as a test grid. More runs
were performed for a grid with size 325*325*35 (using a 7km mesh). A grid like
this is currently used in production mode.

Again, the runs on Blue Gene/L were done in co-processor mode and using
compiler options -O3 -qstrict -qarch=440 -qtune=440 globally for the whole
code.

Figure 8-39 shows the comparison of wall clock times between Blue Gene and
the p655+ system at Poughkeepsie. Of course the p655+ system shows a better
per node performance based on the higher clock speed of the single CPU. The
Blue Gene/L timings are additionally distorted by a weak performance of the I/O
part of the program.

Figure 8-39 BG/L execution time

To demonstrate this, Figure 8-39 shows another curve with the same runs, but
with the wall clock time being reduced by the time spent in I/O operation.
Comparing these two curves shows the effect of I/O on total performance.

Two reasons can be made responsible for the remarkable influence of I/O on the
performance numbers. On the one hand there is the limited performance of the
NFS server on the benchmark system. Of course this is a transient effect, as the
Watson Prototype awaits the implementation of a proper GPFS file system that
324 Unfolding the IBM ̂Blue Gene Solution

would greatly help the I/O performance. On the other hand, the I/O is done by
one MPI task only, which is not a preferable way to do I/O on Blue Gene. It was
also noted earlier that distribution of the I/O to several MPI tasks is a
considerable amount of work—if possible at all—because it involves the
parallelization of the GRIB encoding.

If the I/O is taken out, it takes roughly 3 times more MPI tasks on Blue Gene to
have the same performance level as on the p655+ cluster. This is in line with
similar observations for other applications.

The devastating effect of the present I/O performance shows very clearly when
parallel efficiencies are plotted against the number of tasks. Since there is no
reference run on one processor, the parallel efficiency is normalized to 1 at the
smallest configuration run on the system under consideration.

Figure 8-40 BG/L efficiency

Figure 8-40 shows the widening gap in parallel efficiency of the timings with and
without I/O. Without I/O, LM shows higher parallel efficiency on Blue Gene and
can be expected to scale to higher numbers.
 Chapter 8. Applications on Blue Gene 325

326 Unfolding the IBM ̂Blue Gene Solution

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2005. All rights reserved. 327

328 Unfolding the IBM ̂Blue Gene Solution

Appendix A. BG/L prior to porting code

When considering whether an application should be ported to the BG/L system,
certain technical issues have to be checked. The effort required to port a code to
any new hardware should never be underestimated. Therefore, the following list
is designed to help in the decision process.

1. Is the code single threaded? The BG/L system does not support thread
spawning. Also, have you ensured that scripts are not being used to maintain
the workflow?

2. Is the application addressing 32-bit?

3. Does the code use MPI, specifically MPICH v1.2? Although there are many
parallel programming APIs, the only one supported by BG/L is MPICH.

4. Is the code SPMD, and not MPMD? The BG/L system only supports the
SPMD, same program everywhere, style of parallel programming.

5. Is the memory requirement per MPI task less than 500 MB?

6. Is the code computational-intensive? That is, is there a small amount of I/O
compared to computation?

7. Is the code floating point-intensive? This allows the double floating point
capability of BG/L to be exploited.

A

Note: Forks, processes, and threads are not supported on BG/L.
© Copyright IBM Corp. 2005. All rights reserved. 329

8. Have you ensured that the code does not use flex_lm licensing? At present,
there is no flex_lm library support for pLinux.

If you have answered all of the above with yes, then the next questions are:

� Has the code been ported to pLinux?

� Can the problem size be increased with increased numbers of processors?

� Do you use standard input? If yes, can this be changed to a single file input?
330 Unfolding the IBM ̂Blue Gene Solution

Appendix B. BG/L runtime system calls

While the majority of the Blue Gene/L runtime system (called blrts or RTS) is not
exposed to the end user, there are several functions in the RTS which can be
useful to the application programmer. They are summarized in this appendix.

The runtime system calls are externalized through a library, librts.rts.a, which can
be found in the BG/L system library directory. If you want to use the RTS function
calls, you need to link with this library:

blrts_xlf90 ... -L /bgl/BlueLight/ppcfloor/bglsys/lib -l rts.rts ...

The function interfaces and data structures are documented via C/C++ language
header files. These header files can be found in the BG/L system include
directory. To include them in your C or C++ application, make sure that this
directory is in your include path:

blrts_xlc ... -I /bgl/BlueLight/ppcfloor/bglsys/include ...

In the following sections we present useful function calls that are declared in the
rts.h header. We also explain the details of the Blue Gene/L nodes’ personality,
which can be found in the bglpersonality.h header.

Then we show examples of how to access this information from FORTRAN
programs. The wrapper code that we created to make these runtime functions
available to FORTRAN are provided in the Additional Materials section of the
redbooks Web site:

http://www.redbooks.ibm.com/

B

© Copyright IBM Corp. 2005. All rights reserved. 331

B.1 Calls in rts.h
This header contains the declarations for the external functions in the rts.rts
library. Three of them are interesting for general use:

The rts_get_timebase() function can be used for timing purposes:

/* Access hardware timebase registers.
 Taken: nothing
 Returned: number of processor cycles executed since boot
*/
unsigned long long rts_get_timebase();

This number of clock ticks can be converted to seconds using the processor
speed (clockHz) that is part of the BGLpersonality; this is explained in the next
section.

The rts_get_processor() function can be used to find out if the process runs on
the first CPU or second CPU of a node. This is the fourth dimension T (in
addition to torus coordinates X, Y and Z) when running in virtual node mode:

/* Get processor id.
 Taken: nothing
 Returned: 0="I am main processor", 1="I am coprocessor"
*/
extern int rts_get_processor_id();

The rts_get_personality() function is used to access the Blue Gene/L personality
data structure. This is described in detail in the following section, and rts.h
actually includes bglpersonality.h to access the declaration of this structure:

/* Obtain chip personality information.
 Taken: place to put information
 size of that area
 Returned: 0=success

non-0=failure (errno gives reason)
*/
#include <bglpersonality.h>
extern int rts_get_personality(BGLPersonality *dst, unsigned size);

When you call this function, you provide the address of a BGLpersonality
structure as the first argument and the size of that variable as the second:

#include <rts.h>;
BGLPersonality personality;
rts_get_personality(&personality, sizeof(personality));

Most of the other functions in rts.h explicitly deal with the coordination between
the two CPUs on the chip and will not be used directly by application programs.
332 Unfolding the IBM ̂Blue Gene Solution

B.2 Personality data in bglpersonality.h
The personality of a Blue Gene/L node is static data given to every compute
node and I/O node at boot time by the control system. This data contains
information specific to the node, with respect to the block that is being booted.

BGLPersonality is a C language typedef for a structure which contains items like
the node’s coordinates on the torus network. This kind of information can be very
useful if the application programmer wants to determine at runtime where the
tasks of the application are actually running. It can also be used to tune certain
aspects of the application at runtime, like finding out which set of tasks share the
same I/O node and then optimizing the network traffic from the compute nodes to
that I/O node.

Here is an excerpt from the structure declaration:

typedef struct BGLPersonality {
uint16_t CRC; /* CRC for verification */
uint8_t personalitySize; /* Size of struct in 4-byte words */
uint8_t version; /* BGLPERSONALITY_VERSION */
uint32_t DDRSize; /* Memory size in bytes */
...
uint32_t clockHz; /* Clock base frequency in Hz */
...
int8_t xCoord; /* X coord of this node in torus (-1 for I/O node) */
int8_t yCoord; /* Y coord of this node in torus (-1 for I/O node) */
int8_t zCoord; /* Z coord of this node in torus (-1 for I/O node) */
...

inline unsigned getVersion() const;
...

}

The last line shows a C++ style access function declaration. Using this is a more
portable alternative to referencing the structure components directly. Similar
functions exist for the other structure components, and they are implemented
further down in the header file. For example:

inline unsigned BGLPersonality::getVersion() const
 { return this->version; }

For C, there are static inline functions which serve the same purpose:

/* return X coordinate of this node */
static inline unsigned BGLPersonality_xCoord(const BGLPersonality *p)
{
 return p->xCoord;
}

 Appendix B. BG/L runtime system calls 333

Note that the header file also contains functions to set some of these values.
These should never be invoked by an application, but only by the control system
when bringing up the node.

B.2.1 The sanity.c example
In Example B-1 we show a short C program that we found very useful to run on
Blue Gene/L partitions as a basic health check. It prints the MPI task information,
the task’s location on the torus network, the physical location code of the
compute node it is executing on, and its pset membership. A processor set or
pset is the group of compute nodes that are controlled by a single I/O node.
There may be one or more psets in a partition, and understanding the pset
relationships may be useful for tuning purposes.

Example: B-1 The sanity.c health check program

#include <stdio.h>
#include <mpi.h>
#include <rts.h>
#include <bglpersonality.h>

int main (int argc, char **argv)
{
 int num_procs, my_rank;
 char location[BGLPERSONALITY_MAX_LOCATION];
 BGLPersonality personality;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 /* BlueGene runtime: get personality */
 rts_get_personality(&personality, sizeof(personality));
 BGLPersonality_getLocationString(&personality, location);

Attention: The bglpersonality.h data structures have changed several times
as new drivers were released, and may change in the future. It is necessary to
recompile your application if such changes happen. As a safety check, you
can inspect the following:

� The BGLPersonality structure has a component named version which can
be checked at runtime, for example through an assert statement.

� The header itself has a #define with a version number in it:

#define BGLPERSONALITY_VERSION 11

If any of this changes, a recompile may be a good idea.
334 Unfolding the IBM ̂Blue Gene Solution

 if (my_rank == 0) {

printf("---
\n");
 printf("T: MPI-R/S TORUS-MYCOORD/SIZE TORUS VN? MEMORY LOCATION\n");
 printf("P: MPI-R/S PSET-NUM PSET-COORD/SIZE/ORIGIN GI? LOCATION\n");

printf("---
\n");
 }

 /* print my MPI and torus coordinates, plus physical location */
 printf("T: %04d/%d <%d,%d,%d,%d>/<%d,%d,%d,%d> %1d%1d%1d %2s %3dMB(%d)
%s\n",

 my_rank, num_procs,
 BGLPersonality_xCoord(&personality),
 BGLPersonality_yCoord(&personality),
 BGLPersonality_zCoord(&personality),

 rts_get_processor_id(),
 BGLPersonality_xSize(&personality),
 BGLPersonality_ySize(&personality),
 BGLPersonality_zSize(&personality),
 BGLPersonality_virtualNodeMode(&personality)+1,
 BGLPersonality_isTorusX(&personality),
 BGLPersonality_isTorusY(&personality),
 BGLPersonality_isTorusZ(&personality),
 BGLPersonality_virtualNodeMode(&personality) ? "VN" : "CO",
 BGLPersonality_DDRSize(&personality)/(1024*1024),
 personality.DDRModuleType,
 location);

 /* print my MPI and pset coordinates, plus physical location */
 printf("P: %04d/%d %03d/%d/%d/%d <%d,%d,%d>/<%d,%d,%d>/<%d,%d,%d> %1d
%s\n",

 my_rank, num_procs,

 BGLPersonality_rankInPset(&personality),
 BGLPersonality_numNodesInPset(&personality),
 BGLPersonality_psetNum(&personality),
 BGLPersonality_numPsets(&personality),

 BGLPersonality_xPsetCoord(&personality),
 BGLPersonality_yPsetCoord(&personality),
 BGLPersonality_zPsetCoord(&personality),
 BGLPersonality_xPsetSize(&personality),
 BGLPersonality_yPsetSize(&personality),
 BGLPersonality_zPsetSize(&personality),
 Appendix B. BG/L runtime system calls 335

 BGLPersonality_xPsetOrigin(&personality),
 BGLPersonality_yPsetOrigin(&personality),
 BGLPersonality_zPsetOrigin(&personality),

 BGLPersonality_useGlobalInterrupts(&personality),

 location
);

 MPI_Finalize();
 exit(0);
}

B.2.2 Accessing the BG/L runtime information from FORTRAN
Accessing the personality data from FORTRAN is not easily possible, since
accessing C struct data from FORTRAN is difficult and the accessor functions
are inline functions rather than extern functions that can be linked to. Therefore,
this section presents some wrapper code that can be used to access personality
information from FORTRAN. The RTS function calls themselves are easier to
translate into FORTRAN, but for convenience we also provide FORTRAN
wrappers for those.

Example B-2 on page 336 shows a FORTRAN module that contains the interface
definition of the RTS functions. The same can also be provided as an include file
of course. The module uses the BIND(C) attribute and ISO_C_BINDING intrinsic
module of FORTRAN2003 to facilitate portable language interoperability. This is
a useful new feature in XLF Version 9.

Example: B-2 FORTRAN module RTS

module rts
interface

 function rts_get_timebase() bind(c)
 use, intrinsic :: iso_c_binding
 integer(c_long_long) :: rts_get_timebase
 end function rts_get_timebase

 function rts_get_processor_id() bind(c)
 use, intrinsic :: iso_c_binding
 integer(c_int) :: rts_get_processor_id
 end function rts_get_processor_id
 end interface

end module rts
336 Unfolding the IBM ̂Blue Gene Solution

To access the personality data, we decided to avoid passing around the
BGLPersonality structure in FORTRAN, and instead write some C extern
functions that do this internally and can then be called from FORTRAN. So there
are two steps involved: creating the C extern wrappers, and creating a
FORTRAN module (or include file) with the interface definitions.

Example B-3 on page 337 shows the bglpersonality_f.c wrapper. It defines a C
extern function for all those inline accessor function in bglpersonality.h that take a
BGLPersonality input argument. To make calling from FORTRAN easier,
arguments are always passed in by reference and the wrappers use a local
BGLPersonality variable and pass that to the inline accessor function. So from
FORTRAN, only the remaining arguments need to be specified.

Example: B-3 bglpersonailty_f.c: C extern wrappers for bglpersonality.c

#include "rts.h"
#include "bglpersonality.h"

extern unsigned bglpersonality_ddrsize()
{
 BGLPersonality p;
 (void)rts_get_personality(&p, sizeof(p));
 return BGLPersonality_DDRSize(&p);
}
...
extern void bglpersonality_treeaddr2coords(
 unsigned *treeaddr, unsigned *x, unsigned *y, unsigned *z)
/* unsigned treeaddr, unsigned *x, unsigned *y, unsigned *z */
{
 BGLPersonality p;
 (void)rts_get_personality(&p, sizeof(p));
 BGLPersonality_treeAddr2Coords(&p, *treeaddr, x, y, z);
}
...
extern void bglpersonality_getlocationstring(char *buf)
{
 BGLPersonality p;
 (void)rts_get_personality(&p, sizeof(p));
 BGLPersonality_getLocationString(&p, buf);
}

The FORTRAN module in Example B-4 on page 338 contains the interface
blocks for the wrapper functions of Example B-3 on page 337, as well as a
constant definition for the maximum length of the location string.
 Appendix B. BG/L runtime system calls 337

Example: B-4 FORTRAN module BGLPERSONALITY

module bglpersonality
integer, parameter :: BGLPERSONALITY_MAX_LOCATION = 24

interface
function bglpersonality_ddrsize() bind(c)
use, intrinsic :: iso_c_binding

 integer(c_int) :: bglpersonality_ddrsize
end function bglpersonality_ddrsize

...
subroutine bglpersonality_treeaddr2coords(treeaddr,x,y,z) bind(c)
use, intrinsic :: iso_c_binding
integer(c_int), intent(in) :: treeaddr
integer(c_int), intent(out) :: x, y, z

end subroutine bglpersonality_treeaddr2coords
...

subroutine bglpersonality_getlocationstring(buf) bind(c)
use, intrinsic :: iso_c_binding
character(len=BGLPERSONALITY_MAX_LOCATION), intent(out) :: buf

end subroutine bglpersonality_getlocationstring
end interface

end module bglpersonality

To make these wrappers available to all users, put the *.mod files into your local
include directory and bundle up the object files for the FORTRAN modules and
the bglpersonality_f.c wrappers into a library that you put into your local library
directory:

BGLSYS = /bgl/BlueLight/ppcfloor/bglsys
CC = /opt/ibmcmp/vac/7.0/bin/blrts_xlc
FC = /opt/ibmcmp/xlf/9.1/bin/blrts_xlf90
CFLAGS= -O2 -I$(BGLSYS)/include -L$(BGLSYS)/lib

all: librtsfortran.a

librtsfortran.a: rts.o bglpersonality.o bglpersonality_f.o
ar crvf librtsfortran.a rts.o bglpersonality.o bglpersonality_f.o

bglpersonality_f.o: bglpersonality_f.c Makefile

bglpersonality.o: bglpersonality.f Makefile

rts.o: rts.f Makefile

clean::
rm -rf *.a *.o *.mod *~ *core*
338 Unfolding the IBM ̂Blue Gene Solution

All of these source files are available for download, together with the makefile to
build the modules and libraries, from:

http://www.redbooks.ibm.com.

B.2.3 Sanity revisited: sanity.f90
Example B-5 on page 339 contains a FORTRAN 90 program that prints the
same information as the C program in Example B-1 on page 334, using the
FORTRAN modules described in the previous section.

Example: B-5 The sanity health check (simplified) program (FORTRAN)

program rts_from_fortran
 use rts
 use bglpersonality
 use, intrinsic :: iso_c_binding
 implicit none

 real :: x(10000)
 integer :: i
 integer(c_long_long) :: t1, t2
 integer(c_int) :: cpu
 character(len=BGLPERSONALITY_MAX_LOCATION) :: loc

 cpu=bglpersonality_clockhz()
 print *, "cpu=", cpu

 call bglpersonality_getlocationstring(loc)
 print *, "loc ==>", loc, "<=="

 t1=rts_get_timebase()
 do i=1,100000
 call random_number(x)
 end do
 t2=rts_get_timebase()
 print *, "t1=", t1, t1/cpu
 print *, "t2=", t2, t2/cpu
 print *, "diff=", t2-t1, 1.0d0*(t2-t1)/cpu
end program rts_from_fortran
 Appendix B. BG/L runtime system calls 339

340 Unfolding the IBM ̂Blue Gene Solution

Appendix C. Floating point instruction
set

The Blue Gene/L processors are based on the PowerPC 440 processor core,
which is a 32-bit RISC processor conforming to the “Book E enhanced PowerPC
Architecture” documented at:

http://www.ibm.com/chips/techlib

The instruction set for the PowerPC 440 is included in this public documentation.

The special floating point unit on Blue Gene/L processors implements extra
instructions, or “extensions” to the base instruction set architecture.

This appendix provides the mnemonics and meanings for these extra
instructions in order to help analysis of assembler listings of code running on the
Blue Gene/L system.

These instructions are required because of the SIMD-like double floating point
unit. SIMD stands for “single instruction, multiple data” and means that a single
instruction can cause both floating point units to perform the same operation at
the same time, but with each floating point unit using its own private register set.

In the base architecture, floating point operations apply to a single floating point
unit which has 32 floating point registers. On Blue Gene/L, in addition to the base
floating point instructions which continue to operate unchanged, additional

C

© Copyright IBM Corp. 2005. All rights reserved. 341

instructions act on the second floating point unit with its own set of 32 floating
point registers.

C.1 Instruction types specific to BG/L PPC440
There are three additional instruction types which have been added to the
architecture:

1. Parallel instructions, which cause both floating point units to execute the
same floating point instruction on data contained in each floating point’s local
register set.

2. Cross instructions, which cause both floating point units to execute the same
floating point instruction, but in which some of the operands are common to
both instructions.

3. Secondary instructions, which cause only the extra, secondary floating point
unit to operate, with instructions equivalent to those provided for the primary
floating point unit in the base instruction set architecture.

The cross instruction type should be explained further. Some instructions may
contain a constant value that is used repeatedly. For example, we may have two
identical instructions which we might want to execute in parallel, such as A=BxC
and D=ExC. It would be wasteful to have to load the value C twice, once for each
separate floating point unit’s register set. A cross instruction allows the
specification of a single value in either FPU’s register set and tells both floating
point units to use this value.

The other important point is that the result of a cross instruction has to be stored
in the register set of the FPU processing the instruction. In other words, it is
possible to read the contents of the register on the other FPU, but not to store
information into the other FPU’s register set.

The mnemonics for these three instruction types can be identified at a high level
by their common features:

1. Parallel instructions for memory load/store operations start with “lfp” or “stfp”.
Parallel instructions for other operations start with “fp”.

2. Cross instructions for memory load/store operations start with “lfx” or “stfx”.
Cross instructions for other operations start with “fx”.

3. Secondary instructions for memory load/store operations start with “lfs” or
“stfs”.
Secondary instructions for other operations start with “fs”.
342 Unfolding the IBM ̂Blue Gene Solution

C.2 Additional floating point instructions
This section contains tables of additional instruction mnemonics, grouped by
instruction type, coupled with a pseudo-code description of what operations are
performed by the single instruction.

Each instruction operates on up to three operands, which are all floating point
numbers stored in the floating point unit’s floating point registers. These
operands are denoted as A, B and C when used in the description of each
operation. For each operand a subscript, p or s, is used to denote which register
set is the source for this operand, primary or secondary.

The instruction may also generate a floating point value to be saved in a target
register, and this is denoted as Tp or Ts.

For store operations, a single register from one or both floating point units is
written to memory, and denoted as Sp or Ss.

C.2.1 Summary
Table C-1 contains a summary of the different floating point instruction types. For
each instruction type it also shows whether or not additional instructions have
been provided for the Blue Gene/L floating point unit, and if so, what type of
extended instructions are available.

Table C-1 Summary of instruction types that have been extended

Class of instruction Extended instruction
types

Base PowerPC Book E
mnemonic

add parallel fadd, fadds, fsub, fsubs

multiply parallel, cross fmul, fmuls

multiply-add parallel, cross fmadd, fmadds, fmsub,
fmsubs,fnmadd, fnmadds,
fnmsub, fnmsubs

divide none fdiv, fdivs

estimate parallel fres, frsqrte

compare secondary fcompo, fcompu

convert to integer parallel fctiw, fctiwz

convert to single precision parallel frsp

move parallel, cross, secondary fmr, fneg, fabs, fnabs
 Appendix C. Floating point instruction set 343

C.2.2 Add instructions
Table C-2 Parallel add and subtract instructions

C.2.3 Estimate instructions
Table C-3 Estimate instructions

select parallel fsel

move from FPSCR none mffs

move to CR from FPSCR none mcrfs

move to FPSCR none mtfsfi, mtfsf, mtfsb0,
mtfsb1

load floating double parallel, cross, secondary lfd, lfdx, lfdu, lfdux

load floating single parallel, cross, secondary lfs, lfsx, lfsu, lfsux

store floating double parallel, cross, secondary stfd, stfdx, stfdu, stfdux

store floating single parallel, cross, secondary stfs, stfsx, stfsu, stfsux

store as integer parallel stfiwx

square root none fsqrt, fsqrts

double- int to FP none fcfid

FP to double-Int none fctid

Class of instruction Extended instruction
types

Base PowerPC Book E
mnemonic

Instruction Mnemonic Description

Floating Parallel Add fpadd Ap + Bp -> Tp, As + Bs -> Ts

Floating Parallel Subtract fpsub Ap - Bp -> Tp, As - Bs -> Ts

Instruction Mnemonic Description

Floating Parallel Reciprocal Estimatea

a. This is a double-precision instruction, unlike the Book E “fres” instruction.

fpre RecipEst(BP) -> TP,
RecipEst(BS) -> TS

Floating Parallel Reciprocal Square Root
Estimate

fprsqrte RSqrtEst(BP) -> TP,
RSqrtEst(BS) -> TS
344 Unfolding the IBM ̂Blue Gene Solution

C.2.4 Multiply instructions
Table C-4 Multiply instructions

C.2.5 Multiply-add instructions
Table C-5 Symmetric multiply-add instructions

Instruction Mnemonic Description

Floating Parallel Multiply fpmul APCP -> TP, ASCS -> TS

Floating Cross Multiply fxmul ASCP -> TP, APCS -> TS

Floating Cross Copy-primary Multiply fxpmul APCP -> TP, APCS -> TS

Floating Cross Copy-secondary
Multiply

 fxsmul AsCp -> Tp, AsCs -> Ts

Instruction Mnemonic Description

Floating Parallel Multiply-Add fpmadd AP + BP -> TP, ASCS + BS -> TS

Floating Parallel Negative
Multiply-Add

fpnmadd -(APCP + BP) -> TP,
-(ASCS + BS) -> TS

Floating Parallel Multiply-Subtract fpmsub APCP - BP -> TP, ASCS - BS ->
TS

Floating Parallel Negative
Multiply-Subtract

fpnmsub -(APCP - BP) -> TP,
-(ASCS - BS) -> TS

Floating Cross Multiply-Add fxmadd ASCP + BP -> TP,
APCS + BS -> TS

Floating Cross Negative Multiply-Add fxnmadd -(ASCP + BP) -> TP,
-(APCS + BS) -> TS

Floating Cross Multiply-Subtract fxmsub ASCP - BP -> TP, APCS - BS ->
TS

Floating Cross Negative
Multiply-Subtract

fxnmsub -(ASCP - BP) -> TP,
-(APCS - BS) -> TS

Floating Cross Copy-Primary
Multiply-Add

fxcpmadd APCP + BP -> TP,
APCS + BS -> TS

Floating Cross Copy-Secondary
Multiply-Add

fxcsmadd ASCP + BP -> TP,
ASCS + BS -> TS

Floating Cross Copy-Primary
Negative Multiply-Add

fxcpnmadd -(APCP + BP) -> TP,
-(APCS + BS) -> TS
 Appendix C. Floating point instruction set 345

Table C-6 Asymmetric multiply-add instructions

Table C-7 Complex multiply-add instructions

Floating Cross Copy-Secondary
Negative Multiply-Add

fxcsnmadd -(ASCP + BP) -> TP,
-(ASCS + BS) -> TS

Floating Cross Copy-Primary
Multiply-Subtract

fxcpmsub APCP - BP -> TP,
APCS - BS -> TS

Floating Cross Copy-Secondary
Multiply-Subtract

fxcsmsub ASCP - BP -> TP,
ASCS - BS -> TS

Floating Cross Copy-Primary
Negative Multiply-Subtract

fxcpnmsub -(APCP - BP) -> TP,
-(APCS - BS) -> TS

Floating Cross Copy-Secondary
Negative Multiply-Subtract

fxcsnmsub -(ASCP - BP) -> TP,
-(ASCS - BS) -> TS

Instruction Mnemonic Description

Floating Cross Copy-Primary
NSub-Primary Multiply-Add

fxcpnpma -(APCP - BP) -> TP,
APCS + BS -> TS

Floating Cross Copy-Secondary
NSub-Primary Multiply-Add

fxcsnpma -(ASCP - BP) -> TP,
ASCS + BS -> TS

Floating Cross Copy-Primary
NSub-Secondary Multiply-Add

fxcpnsma APCP + BP -> TP,
-(APCS - BS) -> TS

Floating Cross Copy-Secondary
NSub-Secondary Multiply-Add

fxcsnsma ASCP + BP -> TP,
-(ASCS - BS) -> TS

Instruction Mnemonic Description

Floating Cross Complex
NSub-Primary Multiply-Add

fxcxnpma -(ASCS - BP) -> TP,
ASCP + BS -> TS

Floating Cross Complex
NSub-Secondary Multiply-Add

fxcxnsma ASCS + BP -> TP,
-(ASCP - BS) -> TS

Floating Cross Complex Multiply-Add fxcxma ASCS + BP -> TP,
ASCP + BS -> TS

Floating Cross Complex Negative
Multiply-Sub

fxcxnms -(ASCS - BP) -> TP,
-(ASCP - BS) -> TS

Instruction Mnemonic Description
346 Unfolding the IBM ̂Blue Gene Solution

C.2.6 Select instruction
Table C-8 Select instruction

C.2.7 Convert and round instructions
Table C-9 Convert and round instructions

C.2.8 Compare instruction
Table C-10 Compare instruction

C.2.9 Move instructions
Table C-11 Move instructions

Instruction Mnemonic Description

Floating Parallel Select fpsel AP ? CP : BP -> TP,
AS ? CS : BS -> TS

Instruction Mnemonic Description

Floating Parallel Convert To Integer
Word

fpctiw fctiw (BP) -> TP,
fctiw (BS) -> TS

Floating Parallel Convert To Integer
Word And Round To Zero

fpctiwz fctiwz (BP) -> TP,
fctiwz (BS) -> TS

Floating Parallel Round To
Single-Precision

fprsp frsp (BP) -> TP,
frsp (BS) -> TS

Instruction Mnemonic Description

Floating Secondary Comparea

a. Does not modify FPSCR, only 440’s CR. Therefore, unordered and ordered
are the same.

fscmp AS <> BS => CR[BF]

Instruction Mnemonic Description

Floating Parallel Move fpmr BP -> TP, BS -> TS

Floating Parallel Negate fpneg -BP -> TP, -BS -> TS

Floating Parallel Absolute Value fpabs |BP| -> TP, |BS| -> TS

Floating Parallel Negate Absolute
Value

fpnabs -|BP| -> TP, -|BS| -> TS

Floating Secondary Move fsmr BS -> TS
 Appendix C. Floating point instruction set 347

C.2.10 Load/store instructions
Table C-12 Load indexed instructions

Floating Secondary Negate fsneg -BS -> TS

Floating Secondary Absolute Value fsabs |BS| -> TS

Floating Secondary Negate Absolute
Value

fsnabs -|BS| -> TS

Floating Cross Move fxmr BP-> TS, BS ->TP

Floating Secondary Move From
Primary

fsmfp BP -> TS

Instruction Mnemonic Description

Instruction Mnemonic Description

Load Floating-Point Parallel Double
Indexed

lfpdx DW[EA]-> TP,
DW[EA+8] -> TS

Load Floating-Point Parallel Double
Update Indexed

lfpdux DW[EA]-> TP,
DW[EA+8] -> TS

Load Floating-Point Parallel Single
Indexed

lfpsx W[EA] -> TP,

W[EA+4] -> TS

Load Floating-Point Parallel Single
Update Indexed

lfpsux W[EA] -> TP,

W[EA+4] -> TS

Load Floating-Point Secondary
Double Indexed

lfsdx DW[EA]-> TS

Load Floating-Point Secondary
Double Update Indexed

lfsdux DW[EA]-> TS

Load Floating-Point Secondary
Single Indexed

lfssx W[EA]-> TS

Load Floating-Point Secondary
Single Update Indexed

lfssux W[EA]-> TS

Load Floating-Point Cross Double
Indexed

lfxdx DW[EA+8]-> TP, DW[EA]
-> TS

Load Floating-Point Cross Double
Update Indexed

lfxdux DW[EA+8]-> TP, DW[EA]
-> TS

Load Floating-Point Cross Single
Indexed

lfxsx W[EA+4]-> TP, W[EA] -> TS
348 Unfolding the IBM ̂Blue Gene Solution

Table C-13 Store indexed instructions

Load Floating-Point Cross Single
Update Indexed

lfxsux W[EA+4]-> TP, W[EA] -> TS

Instruction Mnemonic Description

Store Floating-Point Parallel Double
Indexed

stfpdx SP,SS -> DW[EA],
DW[EA+8]

Store Floating-Point Parallel Double
Update Indexed

stfpdux SP,SS -> DW[EA],
DW[EA+8]

Store Floating-Point Parallel Single
Indexed

stfpsx SP,SS -> W[EA],W[EA+4]

Store Floating-Point Parallel Single
Update Indexed

stfpsux SP,SS -> W[EA],W[EA+4]

Store Floating-Point Parallel as
Integer Word Indexed

stfpiwx SP,SS -> W[EA],W[EA+4]

Store Floating-Point Secondary
Double Indexed

stfsdx SS -> DW[EA]

Store Floating-Point Secondary
Double Update Indexed

stfsdux SS -> DW[EA]

Store Floating-Point Secondary
Single Indexed

stfssx SS -> W[EA]

Store Floating-Point Secondary
Single Update Indexed

stfssux SS -> W[EA]

Store Floating-Point Cross Double
Indexed

stfxdx SP,SS -> DW[EA+8],
DW[EA]

Store Floating-Point Cross Double
Indexed Update

stfxdux SP,SS -> DW[EA+8],
DW[EA]

Store Floating-Point Cross Single
Indexed

stfxsx SP,SS -> W[EA+4],W[EA]

Store Floating-Point Cross Single
Indexed Update

stfxsux SP,SS -> W[EA+4],W[EA]

Instruction Mnemonic Description
 Appendix C. Floating point instruction set 349

350 Unfolding the IBM ̂Blue Gene Solution

Appendix D. Some useful utilities

The Blue Gene/L system we used for this project provides locally written scripts
which are referred to in this redbook, and which may prove useful for other
installations.

On the system we used, the scripts are located in the /bgl/console/bin directory,
as shown in Example D-1.

Example: D-1 Summary listing

jfollows@bgfe01:/bgl/console/bin> pwd
/bgl/console/bin
jfollows@bgfe01:/bgl/console/bin> ls -rtla
total 28
-rwxr-xr-x 1 500 bgl1 232 2005-01-30 09:22 bglusers
-rwxr-xr-x 1 500 bgl1 174 2005-01-30 09:22 bgljobs
drwxrwxr-x 10 500 bgl1 4096 2005-01-30 22:24 ..
-rwxr-xr-x 1 500 bgl1 193 2005-02-03 17:43 bglblocks
-rwxr-xr-x 1 500 bgl1 344 2005-02-03 18:00 bglconsole
drwxr-xr-x 2 500 bgl1 4096 2005-02-10 18:25 .

Since the scripts are relatively simple DB2 queries, this appendix shows their
contents followed by a sample of their output.

D

© Copyright IBM Corp. 2005. All rights reserved. 351

Users who have allocated partitions

Figure D-1 Script to show which users have allocated partitions

Figure D-1 shows that Jim Sexton (user sextonjc) has allocated partition
R01-M1, which on our system represents a midplane.

Active jobs
Figure D-2 shows which jobs are running on the Blue Gene/L system.

jfollows@bgfe01:/bgl/console/bin> cat bglusers
#!/bin/ksh

. /bgl/console/etc/bgl.env

db2 'connect to bgdb0 user bglsysdb using db24bgls'
db2 "select substr(blockid,1,16)blockid,STATUS,OWNER from bglsysdb.tbglblock
where blockid like '%$1%' and status <> 'F' "
db2 'terminate'

jfollows@bgfe01:/bgl/console/bin> ./bglusers

 Database Connection Information

 Database server = DB2/LINUXPPC 8.2.0
 SQL authorization ID = BGLSYSDB
 Local database alias = BGDB0

BLOCKID STATUS OWNER
---------------- ------
--
R01-M1 I sextonjc

 1 record(s) selected.

DB20000I The TERMINATE command completed successfully.
352 Unfolding the IBM ̂Blue Gene Solution

Figure D-2 Jobs running on the Blue Gene/L system

The status information for each job shown is either:

R Running

E Error

The Error state is seen if a job is submitted with incorrect parameters, such as a
non-existent program name or working directory.

jfollows@bgfe01:/bgl/console/bin> cat bgljobs
#!/bin/ksh

. /bgl/console/etc/bgl.env

db2 'connect to bgdb0 user bglsysdb using db24bgls'
db2 "select jobid,username,blockid,status from bglsysdb.tbgljob"
db2 'terminate'

jfollows@bgfe01:/bgl/console/bin> ./bgljobs

 Database Connection Information

 Database server = DB2/LINUXPPC 8.2.0
 SQL authorization ID = BGLSYSDB
 Local database alias = BGDB0

JOBID USERNAME BLOCKID STATUS
----------- -------------------------------- ---------------- ------
 13263 gunnels R00-M0-NA_1 R
 13264 gunnels R00-M1-NE_1 R
 12892 gdozsa R00-M0-N2_1 E
 12984 gunnels R00-M0-NA_1 E
 13007 rsahoo R00-M1-N8_1 E
 13012 gunnels R00-M1-NE_1 E
 13013 rsahoo R00-M1-N8_1 E
 13020 aawyszog R00-M1-NC_1 E

 8 record(s) selected.

DB20000I The TERMINATE command completed successfully.
 Appendix D. Some useful utilities 353

Partitions which are defined
Figure D-3 shows the partitions which have been defined in the Service Node’s
DB2 database and which are available for use. The response from the query
shows the size of each partition - its X, Y and Z dimensions. So R01-M1 (shown
allocated earlier) is an 8x8x8 partition, 512 nodes, or a mid-plane. R00 is an
8x8x16 partition, 1024 nodes, or a complete rack.

Figure D-3 List partitions defined to this Blue Gene/L system

jfollows@bgfe01:/bgl/console/bin> cat bglblocks
#!/bin/ksh

. /bgl/console/etc/bgl.env

db2 "connect to bgdb0 user bglsysdb using db24bgls"
db2 "select substr(blockid,1,16)blockid,sizex,sizey,sizez from
bglsysdb.tbglblock"
db2 "terminate"

jfollows@bgfe01:/bgl/console/bin> ./bglblocks

 Database Connection Information

 Database server = DB2/LINUXPPC 8.2.0
 SQL authorization ID = BGLSYSDB
 Local database alias = BGDB0

BLOCKID SIZEX SIZEY SIZEZ
---------------- ----------- ----------- -----------
CH-R001-NA_1 0 0 0
DIAG_R000_32 8 8 8
DIAG_R001_128 8 8 8
DIAG_R001_16 8 8 8
DIAG_R001_32 8 8 8
DIAG_R001_64 8 8 8
DIAG_R010_64 8 8 8
DIAG_R011_64 8 8 8
R00 8 8 16
R00-M0 8 8 8
....
R01-M1 8 8 8
....
354 Unfolding the IBM ̂Blue Gene Solution

Console environment
The bglconsole script shown in Figure D-4 is a short-cut method of invoking the
mmcs_db_console environment, which can be used for allocating partitions and
submitting jobs, as shown elsewhere in this redbook.

Figure D-4 Script to invoke a console environment

jfollows@bgfe01:/bgl/console/bin> cat bglconsole
#!/bin/ksh

#
script for starting the mmcs db server, console and eventually proxy under
one supervised
script.

source the environment variables.
#
. /bgl/console/etc/bgl.env

#
currently the only way to get this to go after a db.properties file.
#

$BL_INSTALL/bglsys/bin/mmcs_db_console --consoleip $MMCS_SERVER_IP
$DB_PROPERTIES $@
 Appendix D. Some useful utilities 355

356 Unfolding the IBM ̂Blue Gene Solution

Appendix E. Compiler configuration file

Because all compilation for Blue Gene/L is performed on the front end nodes, it is
a cross-compilation process.

The default compiler installation allows compilation to take place with the target
execution environment the same as the compilation environment.

As one example, the C compiler is invoked using the command blrts_xlc in
place of the normal command xlc, which invokes the C compiler with an
alternative compiler options file. The script which invokes the C compiler for Blue
Gene/L is shown in Figure E-1.

E

© Copyright IBM Corp. 2005. All rights reserved. 357

Figure E-1 Customised compiler invocation command script

Other scripts are provided for different C and FORTRAN compiler invocations.

Sample compiler options file
Example E-1 shows the complete compiler options file used for Blue Gene/L,
/etc/opt/ibmcmp/blrts.cfg. This options file is used in place of the default
compiler options file by using the compiler invocation commands such as
blrts_xlc in place of the normal xlc. This single compiler options file is used for
all cross-compilation environment for Blue Gene/L, including FORTRAN as well
as C.

Example: E-1 Compiler default options for cross-compilation for Blue Gene/L

* Configuration file generated on "Thu Dec 9 12:49:46 CST 2004"
* with "/opt/ibmcmp/vac/7.0/bin/vac_configure -smprt /opt/ibmcmp/xlsmp/1.5 -mass
/opt/ibmcmp/xlmass/4.1 -vac /opt/ibmcmp/vac/7.0 -install /opt/ibmcmp/vac/7.0/etc/vac.base.cfg
-gcc /usr -gcc64 /usr -vacpp /opt/ibmcmp/vacpp/7.0 -vacpprt /opt/ibmcmp/vacpp/7.0 -vaclic
/opt/ibmcmp/vac/7.0"
* GCC version used: "3.3.3"
* Configuration file generated on "Thu Dec 9 12:50:34 CST 2004"
* with "/opt/ibmcmp/xlf/9.1/bin/xlf_configure -smprt /opt/ibmcmp/xlsmp/1.5 -mass
/opt/ibmcmp/xlmass/4.1 -xlf /opt/ibmcmp/xlf/9.1 -install /opt/ibmcmp/xlf/9.1/etc/xlf.base.cfg
-gcc /usr -gcc64 /usr -xlfrt /opt/ibmcmp/xlf/9.1 -xlflic /opt/ibmcmp/xlf/9.1"
* GCC version used: "3.3.3"
*
* Licensed Materials - Property of IBM
* IBM XL C/C++ Enterprise Edition V7.0
* 5724-I11
* IBM(R) XL Fortran Advanced Edition V9.1 for Linux(R)
* 5724-K76

jfollows@bgfe01:/opt/ibmcmp/vac/7.0/bin> cat blrts_xlc
#!/bin/bash

export XL_CONFIG=`echo ${0} | sed -e
's#/opt/ibmcmp/.*$#/etc/opt/ibmcmp/#'``basename ${0%_*}`.cfg
blrtscmd="`dirname ${0%_*}`/${0##*_} $@"

if [-n "$BLRTSDEBUG"]; then
 echo "export XL_CONFIG=${XL_CONFIG}"
 echo "$blrtscmd"
fi
exec $blrtscmd
358 Unfolding the IBM ̂Blue Gene Solution

* (C) Copyright IBM Corp. 1991, 2004. All Rights Reserved.
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
**

* -qlanglvl=extc89 C compiler with common extensions, UNIX headers
xlc: use = DEFLT_BGL_C
 options = -qlanglvl=extc89,-qcpluscmt,-qkeyword=inline,-qalias=ansi

* ANSI C compiler, UNIX headers (V6 Compatibility version)
xlc_v6: use = DEFLT_BGL_C
 options = -qalias=ansi

* C compiler, extended mode
cc: use = DEFLT_BGL_C
 options = -qlanglvl=extended,-qnoro,-qnoroconst

* Strict ISO/C89 compiler, ISO/C89 headers
c89: use = DEFLT_BGL_C
 options =
-D_ANSI_C_SOURCE,-D__STRICT_ANSI__,-qalias=ansi,-qnolonglong,-qstrict_induction

* Strict ISO C99 compiler, ISO C99 headers
c99: use = DEFLT_BGL_C
 options =
-D_ANSI_C_SOURCE,-D_ISOC99_SOURCE,-D__STRICT_ANSI__,-qlanglvl=stdc99,-qalias=ansi,-qstrict_indu
ction

* C++ compiler
xlC: use = DEFLT_BGL_C
 options = -qalias=ansi
 libraries = -lxlopt,-lxl,-libmc++
 gcc_libdirs=
-L/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2,-L/bgl/BlueLight/ppcf
loor/blrts-gnu/powerpc-bgl-blrts-gnu/lib,-L/bgl/BlueLight/ppcfloor/blrts-gnu/lib
 gcc_cpp_libs = -lstdc++,-lm
 gcc_static_libs = -lgcc,-lm,-lc,-lgcc

* C++ compiler
xlc++: use = DEFLT_BGL_C
 options = -qalias=ansi
 libraries = -lxlopt,-lxl,-libmc++
 gcc_libdirs=
-L/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2,-L/bgl/BlueLight/ppcf
loor/blrts-gnu/powerpc-bgl-blrts-gnu/lib,-L/bgl/BlueLight/ppcfloor/blrts-gnu/lib
 gcc_cpp_libs = -lstdc++,-lm
 gcc_static_libs = -lgcc,-lm,-lc,-lgcc
 Appendix E. Compiler configuration file 359

* Standard Fortran compiler
xlf95: use = DEFLT_BGL_F
 libraries = -lxlf90,-lxlopt,-lxlomp_ser,-lxl,-lxlfmath
 gcc_libs = -lm,-lc,-lgcc
 options = -qfree=f90

* Alias for standard Fortran compiler
f95: use = DEFLT_BGL_F
 libraries = -lxlf90,-lxlopt,-lxlomp_ser,-lxl,-lxlfmath
 gcc_libs = -lm,-lc,-lgcc
 options = -qfree=f90
 fsuffix = f95

* Fortran 90 compiler
xlf90: use = DEFLT_BGL_F
 libraries = -lxlf90,-lxlopt,-lxlomp_ser,-lxl,-lxlfmath
 gcc_libs = -lm,-lc,-lgcc
 options = -qxlf90=noautodealloc:nosignedzero,-qfree=f90

* Alias for Fortran 90 compiler
f90: use = DEFLT_BGL_F
 libraries = -lxlf90,-lxlopt,-lxlomp_ser,-lxl,-lxlfmath
 gcc_libs = -lm,-lc,-lgcc
 options = -qxlf90=noautodealloc:nosignedzero,-qfree=f90
 fsuffix = f90

* Original Fortran compiler
xlf: use = DEFLT_BGL_F
 libraries = -lxlf90,-lxlopt,-lxlomp_ser,-lxl,-lxlfmath
 gcc_libs = -lm,-lc,-lgcc
 options =
-qnozerosize,-qsave,-qalias=intptr,-qposition=appendold,-qxlf90=noautodealloc:nosignedzero,-qxl
f77=intarg:intxor:persistent:noleadzero:gedit77:noblankpad:oldboz:softeof

* Alias for original Fortran compiler
f77: use = DEFLT_BGL_F
 libraries = -lxlf90,-lxlopt,-lxlomp_ser,-lxl,-lxlfmath
 gcc_libs = -lm,-lc,-lgcc
 options =
-qnozerosize,-qsave,-qalias=intptr,-qposition=appendold,-qxlf90=noautodealloc:nosignedzero,-qxl
f77=intarg:intxor:persistent:noleadzero:gedit77:noblankpad:oldboz:softeof

* Alias for original Fortran compiler, used for XPG4 compliance
fort77: use = DEFLT_BGL_F
 libraries = -lxlf90,-lxlopt,-lxlomp_ser,-lxl,-lxlfmath
 gcc_libs = -lm,-lc,-lgcc
360 Unfolding the IBM ̂Blue Gene Solution

 options =
-qnozerosize,-qsave,-qalias=intptr,-qposition=appendold,-qxlf90=noautodealloc:nosignedzero,-qxl
f77=intarg:intxor:persistent:noleadzero:gedit77:noblankpad:oldboz:softeof

* common BlueGene/L C/C++ definitions
DEFLT_BGL_C: cppcomp = /opt/ibmcmp/vacpp/7.0/exe/xlCentry
 ccomp = /opt/ibmcmp/vac/7.0/exe/xlcentry
 code = /opt/ibmcmp/vac/7.0/exe/xlCcode
 xlC = /opt/ibmcmp/vacpp/7.0/bin/xlC
 ipa = /opt/ibmcmp/vac/7.0/exe/ipa
 dis = /opt/ibmcmp/vac/7.0/exe/dis
 cppfilt = /bgl/BlueLight/ppcfloor/blrts-gnu/bin/powerpc-bgl-blrts-gnu-c++filt
 bolt = /opt/ibmcmp/vac/7.0/exe/bolt.blrts
 artool = /opt/ibmcmp/vac/7.0/exe/ar.extract
 as = /bgl/BlueLight/ppcfloor/blrts-gnu/bin/powerpc-bgl-blrts-gnu-as
 ld = /bgl/BlueLight/ppcfloor/blrts-gnu/bin/powerpc-bgl-blrts-gnu-ld
 options =
-D_CALL_SYSV,-D__null=0,-D__NO_MATH_INLINES,-qbgl,-qdebug=nblrl,-qarch=440d,-qtune=440,-qcache=
level=1:type=i:size=32:line=32:assoc=64:cost=8,-qcache=level=1:type=d:size=32:line=32:assoc=64:
cost=8,-qcache=level=2:type=c:size=4096:line=128:assoc=8:cost=40,-Wl\,-static\,-melf32ppcblrts
 ldopt = "o:e:u:R:H:Y:Z:L:T:A:k:j:"
 xlCcopt = -qlanglvl=extc89,-qcpluscmt,-qkeyword=inline,-qalias=ansi
 dynlib = -dynamic-linker,/lib/ld.so.1
 crt = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/crt1.o
 gcrt = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/gcrt1.o
 mcrt = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/gcrt1.o
 crtp = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/crti.o
 crte = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/crtn.o
 crtbegin =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/crtbegin.o
 crtbegin_s =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/crtbeginS.o
 crtbegin_t =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/crtbeginT.o
 crtend =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/crtend.o
 crtend_s =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/crtendS.o
 libdirs =
-L/opt/ibmcmp/xlsmp/1.5/blrts_lib,-L/opt/ibmcmp/xlmass/4.1/blrts_lib,-L/opt/ibmcmp/vac/7.0/blrt
s_lib,-L/opt/ibmcmp/vacpp/7.0/blrts_lib
 smplibraries =
 libraries = -lxlopt,-lxl
 bigdata =
-T/bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/ldscripts/elf32ppcblrts.x
 gcc_path = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu
 Appendix E. Compiler configuration file 361

 gcc_libdirs =
-L/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2,-L/bgl/BlueLight/ppcf
loor/blrts-gnu/powerpc-bgl-blrts-gnu/lib,-L/bgl/BlueLight/ppcfloor/blrts-gnu/lib
 gcc_static_libs = -lgcc,-lm,-lc,-lgcc
 __GNUC_MINOR__ = 2
 __GNUC_PATCHLEVEL__ = 0
 __GNUC__ = 3
 clm_path = /opt/clm_ibm
 crt2 = NULL
 defaultmsg = /opt/ibmcmp/vacpp/7.0/msg/en_US
 gcc_c_stdinc =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/include:/bgl/BlueLight/
ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/sys-include
 gcc_cpp_stdinc =
/bgl/BlueLight/ppcfloor/blrts-gnu/include/c++/3.2:/bgl/BlueLight/ppcfloor/blrts-gnu/include/c++
/3.2/powerpc-bgl-blrts-gnu:/bgl/BlueLight/ppcfloor/blrts-gnu/include/c++/3.2/backward:/bgl/Blue
Light/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/include:/bgl/BlueLight/ppcfloor/
blrts-gnu/powerpc-bgl-blrts-gnu/sys-include
 modes_configure = 32_64
 os_major = 9
 os_minor = 0
 os_patchlevel = 0
 os_variant = bgl
 vac_path = /opt/ibmcmp/vac/7.0
 vacpp_path = /opt/ibmcmp/vacpp/7.0
 xlc_c_complexgccinc =
/opt/ibmcmp/xlsmp/1.5/include:/opt/ibmcmp/xlmass/4.1/include:/opt/ibmcmp/vac/7.0/include:/bgl/B
lueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/include:/bgl/BlueLight/ppcflo
or/blrts-gnu/powerpc-bgl-blrts-gnu/sys-include
 xlc_c_stdinc =
/opt/ibmcmp/xlsmp/1.5/include:/opt/ibmcmp/xlmass/4.1/include:/opt/ibmcmp/vac/7.0/include
 xlc_cpp_complexgccinc =
/opt/ibmcmp/xlsmp/1.5/include:/opt/ibmcmp/xlmass/4.1/include:/opt/ibmcmp/vacpp/7.0/include:/bgl
/BlueLight/ppcfloor/blrts-gnu/include/c++/3.2:/bgl/BlueLight/ppcfloor/blrts-gnu/include/c++/3.2
/powerpc-bgl-blrts-gnu:/bgl/BlueLight/ppcfloor/blrts-gnu/include/c++/3.2/backward:/bgl/BlueLigh
t/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/include:/bgl/BlueLight/ppcfloor/blrt
s-gnu/powerpc-bgl-blrts-gnu/sys-include
 xlc_cpp_stdinc =
/opt/ibmcmp/xlsmp/1.5/include:/opt/ibmcmp/xlmass/4.1/include:/opt/ibmcmp/vacpp/7.0/include
 xlcmp_path = /opt/ibmcmp/vac/7.0

* Common BlueGene/L Fortran definitions
DEFLT_BGL_F: xlf = /opt/ibmcmp/xlf/9.1/exe/xlfentry
 crt = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/crt1.o
 crtp = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/crti.o
 crte = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/crtn.o
 crtbegin =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/crtbegin.o
362 Unfolding the IBM ̂Blue Gene Solution

 crtend =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/crtend.o
 crtsavres =
/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2/crtsavres.o
 mcrt = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/gcrt1.o
 gcrt = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/gcrt1.o
 include_32 = -I/opt/ibmcmp/xlf/9.1/include
 dis = /opt/ibmcmp/xlf/9.1/exe/dis
 code = /opt/ibmcmp/xlf/9.1/exe/xlfcode
 hot = /opt/ibmcmp/xlf/9.1/exe/xlfhot
 ipa = /opt/ibmcmp/xlf/9.1/exe/ipa
 bolt = /opt/ibmcmp/xlf/9.1/exe/bolt.blrts
 artool = /opt/ibmcmp/vac/9.1/exe/ar.extract
 defaultmsg = /opt/ibmcmp/xlf/9.1/msg/en_US
 as = /bgl/BlueLight/ppcfloor/blrts-gnu/bin/powerpc-bgl-blrts-gnu-as
 ld = /bgl/BlueLight/ppcfloor/blrts-gnu/bin/powerpc-bgl-blrts-gnu-ld
 cppoptions = -C
 cpp = /opt/ibmcmp/xlf/9.1/exe/cpp
 dynlib = -dynamic-linker,/lib/ld.so.1
 libdirs =
-L/opt/ibmcmp/xlsmp/1.5/blrts_lib,-L/opt/ibmcmp/xlmass/4.1/blrts_lib,-L/opt/ibmcmp/xlf/9.1/blrt
s_lib
 gcc_path = /bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu
 gcc_libdirs=
-L/bgl/BlueLight/ppcfloor/blrts-gnu/lib/gcc-lib/powerpc-bgl-blrts-gnu/3.2,-L/bgl/BlueLight/ppcf
loor/blrts-gnu/powerpc-bgl-blrts-gnu/lib,-L/bgl/BlueLight/ppcfloor/blrts-gnu/lib
 bigdata =
-T/bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/lib/ldscripts/elf32ppcblrts.x
 options =
-qbgl,-qdebug=nblrl,-qarch=440d,-qtune=440,-qcache=level=1:type=i:size=32:line=32:assoc=64:cost
=8,-qcache=level=1:type=d:size=32:line=32:assoc=64:cost=8,-qcache=level=2:type=c:size=4096:line
=128:assoc=8:cost=40,-Wl\,-static\,-melf32ppcblrts
 __GNUC_MINOR__ = 2
 __GNUC_PATCHLEVEL__ = 0
 __GNUC__ = 3
 clm_path = /opt/clm_ibm
 crt2 = NULL
 modes_configure = 32_64
 os_major = 9
 os_minor = 0
 os_patchlevel = 0
 os_variant = bgl
 xlcmp_path = /opt/ibmcmp/xlf/9.1
 xlf_path = /opt/ibmcmp/xlf/9.1
 Appendix E. Compiler configuration file 363

364 Unfolding the IBM ̂Blue Gene Solution

Appendix F. Systems comparison

Blue Gene/L and other contemporary architectures
We use the following three areas to compare Blue Gene/L with some of the
commercially successful distributed systems:

� Node or system

� Communication network

� Operating system

Our comparison, based on this classification, is helpful in assessing the relative
merits of these potentially competing archtiectures and in discussing the
characterization of application sets for which Blue Gene/L can be a suitable
hardware platform.

First, we look at the information in the following three tables about Blue Gene/L
and current commercial computing systems. The tables give a nutshell view of
Blue Gene/L, which facilitates meaningful comparison. A more detailed treatment
of these features is provided in later chapters of this publication.

Table F-1 lists information about the nodes used in Blue Gene/L and other
hardware platforms and their operational characteristics. Fill in the remaining
data when you perform your own comparison.

F

© Copyright IBM Corp. 2005. All rights reserved. 365

Table F-1 Comparison of BlueGene/L and other computing systems

Table F-2 presents information about the communication networks used in these
systems, and their performance characteristics. Low latency and high bandwidth
networks reduce the communication component of application execution, thereby
enhancing the scalability of the application in large scale network configurations.

IBM
BlueGene/L IBM p575 IBM e326 IBM e336

CPU IBM
PowerPC 440

IBM
POWER5

AMD
Optereon

Intel
Nacona

Clock (MHz) 700 1900 2400 3600

Max CPUs per node 2 8 2 2

Max number of nodes 65536

Operating system Compute Node
Kernel

AIX or Linux Linux Linux

Specfp

LINPACK

Specfp

Max Memory per node 512 M bytes 32000 M bytes 16000 M bytes 16000 M bytes

L1/L2/L3

Memory Bandwidth

Stream (mbytes/sec)

Power/CPU (kwh)

Frame Size (CPUs)

Peak FLOPS per frame

Power per frame

Floor space per frame

FLOPs/kwh

FLOPS/sq ft
366 Unfolding the IBM ̂Blue Gene Solution

Table F-2 Performance comparison of communicaiton networks

Table F-3 lists the characteristics of the operating system that is used to manage
the resources on a node and on a cluster of these nodes in Blue Gene/L and
other platforms.

Network System One-way
MPI latency
(µsec)

One direction
MPI bandwith
(M Bytes/sec)

Bidirectional
MPI
bandwidth
(M Bytes/sec)

Bisection
Bandwidth
(M Bytes/sec)

IBM
Blue Gene/L
TORUS

Blue Gene/L 4 per link
10 max

150 300 0.7 TB/sec
1.4 TB/sec

IBM
Blue Gene/L
Collective

Blue Gene/L 2.5 (MPI?)
µsec/traversal

2800 (MPI?)
GB/link

IBM
Federation

POWER5

Myricom
Myrinet

e326 10 µsec 200 400

InfiniBand
e326 (2.2 GHz) 5.35 621 666

e336 5.03 965 1725
 Appendix F. Systems comparison 367

Table F-3 Comparison of operating system functionality

OS details Blue Gene/L CNK AIX Linux

Memory 6 MB

Multitasking No Yes Yes

External interfaces sockets (client only) sockets
(client/server)

sockets
(client/server)

Persistent state No Yes Yes

Programming model Serial and MPI Serial, MPI and
other network
interface

Serial, MPI and
other network
interfaces

I/O No local disk, interface to nodes
reserved as I/O clients (NFS only)
to outboard I/O servers.
Through nodes reserved for I/O
(with NFS client)

Local disk or I/O
client (NFS) to
other servers

Local disk or I/O
client (NFS) to
other servers

I/O nodes No local disk
368 Unfolding the IBM ̂Blue Gene Solution

Appendix G. Hardware counters

On Blue Gene/L, the bgl_perfctr interface is a user-level API that provides
access to the universal performance counter unit (UPC) and double floating point
unit (FPU) counters. The bgl_perfctr interface presents the user with a set of 52
virtual 64-bit counters that map to the underlying hardware counters. The first 48
counters map to the UPC counters on the chip, while the last four counters map
to the two counters in each of the double FPUs, one counter for arithmetic
operations and one counter for load and store operations.

The user instantiates counters by requesting to register a certain event. All
possible events are available as mnemonics. Given a request to register an
event, the library interface locates an available hardware counter capable of
registering the particular event. It this search is successful the event is registered
as an event pending to be added. If there is no available hardware counter for
the event, an error code is returned to the user.

The counters pending to be added get invoked through the user initiating a call to
bgl_perfctr_commit(). At this point all pending changes to the counter setup is
performed and the counter map is updated. A call to bgl_perfctr_revoke() will
clear all pending changes and leave the hardware counters untouched.

The virtual counters in the bgl_perfctr interface are updated from the actual
hardware counters by calling bgl_perfctr_update() directly. Also, calling any of
the functions bgl_perfctr_copy_counters(), bgl_perfctr_copy_state() or
bgl_perfctr_get_counters() will implicitly call bgl_perfctr_update(). The
virtual counter update reads all active hardware counters and updates the

G

© Copyright IBM Corp. 2005. All rights reserved. 369

corresponding virtual counter with the number of counts aggregated since the
latest read. The configured UPC counters are read through the memory map
interface, while FPU counters are read through DCR access.

At library initialization, which is explicitly made by the user, the user can set up
the library to periodically call bgl_perfctr_update() by means of a periodic timer
interrupt. This interrupt will occur with an interval of approximately 6s (on a
700MHz system), which will guard against any 32-bit counter overflowing more
than once between updates to the virtual counters. By default this interval timer
will be set up after synchronization between all nodes in the partition. This will
reduce the impact on a parallel running application from the periodic virtual
counter updates.

G.1 Link with bgl_perfctr library on Blue Gene/L
The bgl_perfctr library libbgl_perfctr.rts.a is located in:

/bgl/BlueLight/ppcfloor/bglsys/lib

The header file for the C/C++ language is located in:

/bgl/BlueLight/ppcfloor/bglsys/include/bgl_perfctr.h

G.2 API details
A list of the first 100 defined event mnemonics is provided in Figure G-1 on
page 371, to illustrate the naming scheme. The complete list is provided in:

/bgl/BlueLight/ppcfloor/bglsys/include/bgl_perfctr_events.h

These mnemonics define an enumerated data type that is used to identify the
events in bgl_perfctr. A full event descriptor is a structure with two components:
the event mnemonic, and the edge or state to monitor. The definition of the event
descriptor is shown in Example 8-10 on page 371, together with an example of
its use. UPC events need to specify both an event type and an edge type to be
complete. For FPU events the edge selector is not used and should always be
set to zero.

In Example 8-10, two examples of events are shown. The first event will count
multiplies and divides in FPU0, while the second will count the duration in UPC
cycles (CLOCKx2 cycles) where there were 3 outstanding read requests in CPU
core 0. All durations are in the unit of UPC cycles, which is equal to two CPU
cycles.
370 Unfolding the IBM ̂Blue Gene Solution

Figure G-1 Example event mnemonic (event number)

Example 8-10 The bgl_perfctr event descriptor (from bgl_perfctr_events.h)

typedef struct BGL_PERFCTR_event {
 BGL_PERFCTR_event_num_t num;
 unsigned int edge;
} BGL_PERFCTR_event_t;

BGL_FPU_ARITH_ADD_SUBTRACT BGL_FPU_ARITH_MULT_DIV
BGL_FPU_ARITH_OEDIPUS_OP BGL_FPU_ARITH_TRINARY_OP
BGL_FPU_LDST_DBL_LD BGL_FPU_LDST_DBL_ST
BGL_FPU_LDST_QUAD_LD BGL_FPU_LDST_QUAD_ST
BGL_2NDFPU_ARITH_ADD_SUBTRACT BGL_2NDFPU_ARITH_MULT_DIV
BGL_2NDFPU_ARITH_OEDIPUS_OP BGL_2NDFPU_ARITH_TRINARY_OP
BGL_2NDFPU_LDST_DBL_LD BGL_2NDFPU_LDST_DBL_ST
BGL_2NDFPU_LDST_QUAD_LD BGL_2NDFPU_LDST_QUAD_ST
BGL_UPC_L3_CACHE_HIT BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR
BGL_UPC_L3_CACHE_MISS_DATA_WILL_BE_REQED_DDR BGL_UPC_L3_EDRAM_ACCESS_CYCLE
BGL_UPC_L3_EDRAM_RFR_CYCLE BGL_UPC_L3_LINE_STARTS_EVICT_LINE_NUM_PRESSURE
BGL_UPC_L3_MISS_DIR_SET_DISBL BGL_UPC_L3_MISS_NO_WAY_SET_AVAIL
BGL_UPC_L3_MISS_REQUIRING_CASTOUT BGL_UPC_L3_MISS_REQUIRING_REFILL_NO_WR_ALLOC
BGL_UPC_L3_MSHNDLR_TOOK_REQ BGL_UPC_L3_MSHNDLR_TOOK_REQ_PLB_RDQ
BGL_UPC_L3_MSHNDLR_TOOK_REQ_RDQ0 BGL_UPC_L3_MSHNDLR_TOOK_REQ_RDQ1
BGL_UPC_L3_MSHNDLR_TOOK_REQ_WRBUF BGL_UPC_L3_PAGE_CLOSE
BGL_UPC_L3_PAGE_OPEN BGL_UPC_L3_PLB_WRQ_DEP_DBUF
BGL_UPC_L3_PLB_WRQ_DEP_DBUF_HIT BGL_UPC_L3_PREF_REINS_PULL_OUT_NEXT_LINE
BGL_UPC_L3_PREF_REQ_ACC_BY_PREF_UNIT BGL_UPC_L3_RD_BURST_1024B_LINE_RD
BGL_UPC_L3_RD_EDR__ALL_KINDS_OF_RD BGL_UPC_L3_RD_MODIFY_WR_CYCLE_EDR
BGL_UPC_L3_REQ_TKN_CACHE_INHIB_RD_REQ BGL_UPC_L3_REQ_TKN_CACHE_INHIB_WR
BGL_UPC_L3_REQ_TKN_NEEDS_CASTOUT BGL_UPC_L3_REQ_TKN_NEEDS_REFILL
BGL_UPC_L3_WRBUF_LINE_ALLOC BGL_UPC_L3_WRQ0_DEP_DBUF
BGL_UPC_L3_WRQ0_DEP_DBUF_HIT BGL_UPC_L3_WRQ1_DEP_DBUF
BGL_UPC_L3_WRQ1_DEP_DBUF_HIT BGL_UPC_L3_WR_EDRAM__INCLUDING_RMW
BGL_UPC_PU0_DCURD_1_RD_PEND BGL_UPC_PU0_DCURD_2_RD_PEND
BGL_UPC_PU0_DCURD_3_RD_PEND BGL_UPC_PU0_DCURD_BLIND_REQ
BGL_UPC_PU0_DCURD_COHERENCY_STALL_WAR BGL_UPC_PU0_DCURD_L3_REQ
BGL_UPC_PU0_DCURD_L3_REQ_PEND BGL_UPC_PU0_DCURD_LINK_REQ
BGL_UPC_PU0_DCURD_LINK_REQ_PEND BGL_UPC_PU0_DCURD_LOCK_REQ
BGL_UPC_PU0_DCURD_LOCK_REQ_PEND BGL_UPC_PU0_DCURD_PLB_REQ
BGL_UPC_PU0_DCURD_PLB_REQ_PEND BGL_UPC_PU0_DCURD_RD_REQ
BGL_UPC_PU0_DCURD_SRAM_REQ BGL_UPC_PU0_DCURD_SRAM_REQ_PEND
BGL_UPC_PU0_DCURD_WAIT_L3 BGL_UPC_PU0_DCURD_WAIT_LINK
BGL_UPC_PU0_DCURD_WAIT_LOCK BGL_UPC_PU0_DCURD_WAIT_PLB
BGL_UPC_PU0_DCURD_WAIT_SRAM BGL_UPC_PU0_PREF_FILTER_HIT
BGL_UPC_PU0_PREF_PREF_PEND BGL_UPC_PU0_PREF_REQ_VALID
BGL_UPC_PU0_PREF_SELF_HIT BGL_UPC_PU0_PREF_SNOOP_HIT_OTHER
BGL_UPC_PU0_PREF_SNOOP_HIT_PLB BGL_UPC_PU0_PREF_SNOOP_HIT_SAME
BGL_UPC_PU0_PREF_STREAM_HIT BGL_UPC_PU1_DCURD_1_RD_PEND
BGL_UPC_PU1_DCURD_2_RD_PEND BGL_UPC_PU1_DCURD_3_RD_PEND
BGL_UPC_PU1_DCURD_BLIND_REQ BGL_UPC_PU1_DCURD_COHERENCY_STALL_WAR
BGL_UPC_PU1_DCURD_L3_REQ BGL_UPC_PU1_DCURD_L3_REQ_PEND
BGL_UPC_PU1_DCURD_LINK_REQ BGL_UPC_PU1_DCURD_LINK_REQ_PEND
BGL_UPC_PU1_DCURD_LOCK_REQ BGL_UPC_PU1_DCURD_LOCK_REQ_PEND
BGL_UPC_PU1_DCURD_PLB_REQ BGL_UPC_PU1_DCURD_PLB_REQ_PEND
BGL_UPC_PU1_DCURD_RD_REQ BGL_UPC_PU1_DCURD_SRAM_REQ
BGL_UPC_PU1_DCURD_SRAM_REQ_PEND BGL_UPC_PU1_DCURD_WAIT_L3
BGL_UPC_PU1_DCURD_WAIT_LINK BGL_UPC_PU1_DCURD_WAIT_LOCK
BGL_UPC_PU1_DCURD_WAIT_PLB BGL_UPC_PU1_DCURD_WAIT_SRAM
BGL_UPC_PU1_PREF_FILTER_HIT BGL_UPC_PU1_PREF_PREF_PEND
BGL UPC PU1 PREF REQ VALID BGL UPC PU1 PREF SELF HIT
 Appendix G. Hardware counters 371

#define BGL_PERFCTR_UPC_EDGE_HI 0x0
#define BGL_PERFCTR_UPC_EDGE_RISE 0x1
#define BGL_PERFCTR_UPC_EDGE_FALL 0x2
#define BGL_PERFCTR_UPC_EDGE_LOW 0x3

Example of use of the event descriptor

BGL_PERFCTR_event_t fpu_example={ BGL_FPU_ARITH_MULT_DIV, 0};
BGL_PERFCTR_event_t upc_example={ BGL_UPC_PU0_DCURD_3_RD_PEND,
 BGL_PERFCTR_UPC_EDGE_HI};

The internal data structures of the counter control substrate are instantiated at
the time of application launch.

The major part of the internal data structure consists of a control structure. This
structure contains the complete state of the virtual counters and is illustrated in
Example 8-11 on page 372. The 52 available counters are internally enumerated
from 0 to 51. The structure sets the corresponding bit (starting to count from the
least significant bit) in the in_use component for each counter in use. Counters
with pending changes are marked in the modified bit map. After a
bgl_perfctr_commit() or bgl_perfctr_revoke(), this bit map is reset to 0.

The latest value recorded in the virtual counters is available in the virtual
component. Virtual counter k is the virtualization of physical hardware counter k.
The ctrl component contains the value for the different control registers for the
counters. The last component is the content of the physical counter register at
the latest read. The last updated component is updated with the current value of
the time base register at the onset and completion of each virtual counter update.

Example 8-11 The bgl_perfctr structure

typedef struct bgl_perfctr_control {
 /* Bit pattern (one bit per counter register) */
 unsigned long long in_use;
 /* Bit pattern (one bit per counter control register */
 unsigned long long modified;
 unsigned long long virtual[BGL_PERFCTR_NUM_COUNTERS];
 unsigned int ctrl[BGL_PERFCTR_NUM_CTRL];
 unsigned int last[BGL_PERFCTR_NUM_COUNTERS];
 int nmapped;

Important: The hardware counters are a shared resource on the Blue Gene/L
compute node. For this reason, any event programmed for a counter on one of
the cores will also be seen on the second core of the node. This behavior is
present in virtual node mode, as well as in co-processor mode.
372 Unfolding the IBM ̂Blue Gene Solution

 bgl_perfctr_control_map_t map[BGL_PERFCTR_NUM_COUNTERS];
 volatile unsigned long long last_updated;
} bgl_perfctr_control_t;

struct bgl_perfctr_control_map {
 BGL_PERFCTR_event_t event;
 int counter_register;
 int cntrl_register;
 int ref_count;
 int new_count;
} bgl_perfctr_control_map_t;

At each point in time, there are N counting registers in use. To facilitate a simple
readout of counter values, there is an array of length N in the bgl_perfctr control
structure. This array shows the use of each counter. The map is sorted in
ascending order according to the bgl_perfctr event descriptor enumerator. The
number of active events, N, is stored in the component nmapped. The
virtual/physical counter map[k].counter_register, where k<nmapped, is thus
counting the event described by map[k].event.

The complete bgl_perfctr API is shown in Example 8-12 on page 375 and
consists of 14 functions. The functions are:

� bgl_perfctr_init
Initializes the library. This function is equivalent to
bgl_perfctr_init_synch(BGL_PERFCTR_MODE_LOCAL). On success, zero
is returned. On failure, a negative value is returned.

� bgl_perfctr_init_synch
An alternative initialization routine that allows the user to control the amount
of synchronization between the tasks in BG/L. Possible values are:

– BGL_PERFCTR_MODE_LOCAL provides no synchronization and no counter
over-flow protection.

– BGL_PERFCTR_MODE_ASYNC starts a local timer that initiates counter reads at
approximately every 6s to prevent counter overflow.

– BGL_PERFCTR_MODE_SYNC also provides overflow protection using the local
timer.

Note: BGL_PERFCTR_MODE_SYNC differs from BGL_PERFCTR_MODE_ASYNC in
that the previous mode starts the timers after a global barrier to allow
for synchronous counter updates across the application. The return
value indicates the synchronization mode accomplished. This will be
equal to or lower than the supplied mode.
 Appendix G. Hardware counters 373

� bgl_perfctr_shutdown
Stops local timed interrupts on the local core, and if there is no core using the
counters, clears the internal state and stops all counters.

� bgl_perfctr_add_event
Attempts to schedule an event to be added to the running set of counters.

� bgl_perfctr_remove_event
Attempts to schedule an event to be removed from the running set of
counters.

� int bgl_perfctr_commit
Commits all pending changes to the running set of counters.

� int bgl_perfctr_revoke
Removes all pending changes and restores the internal state of the library to
the running set of counters.

� int bgl_perfctr_update
Updates the virtual counters with the current value of the hardware counters.

� int bgl_perfctr_copy_counters
Updates the virtual counters with the current value of the counters, and
provides a copy of the virtual counter values in the supplied buffer.

� int bgl_perfctr_copy_hwstate
Updates the virtual counters with the current value of the counters, and
provides a copy of the complete internal state of the library in the supplied
buffer. This dump includes the information of all configured counters, as well
as the value of the virtual counters after the update.

� int bgl_perfctr_dump_state
Dumps the complete state of the library to a provided file handle. This
function is mainly intended for debugging code that uses the bgl_perfctr
interface.

� bgl_perfctr_control_t* bgl_perfctr_hwstate
Gets a pointer to the internal state of the bgl_perfctr interface.

� int bgl_perfctr_get_counters
Takes the lock on the internal virtual counters and updates the virtual
counters with the current value of the hardware counters. The function returns
without releasing the lock.

� int bgl_perfctr_release_counters
Releases the lock taken by bgl_perfctr_get_counters().

The end user will typically not be interested in accessing the content of the
control registers in the bgl_perfctr control structure, but the information is
available. For asymmetric counters where read and write bit patterns are not the
same, bgl_perfctr uses the write pattern. That is, any time bgl_perfctr reads a
374 Unfolding the IBM ̂Blue Gene Solution

counter control register state from the hardware, it is translated into its
corresponding write bit-order in the library layer.

Example 8-12 The bgl_perfctr API (bgl_perfctr.h)

int bgl_perfctr_init(void);
int bgl_perfctr_init_synch(int mode);
int bgl_perfctr_shutdown();
int bgl_perfctr_add_event(BGL_PERFCTR_event_t event);
int bgl_perfctr_remove_event(BGL_PERFCTR_event_t event);
int bgl_perfctr_commit();
int bgl_perfctr_revoke();
int bgl_perfctr_dump_state(FILE *fh);
int bgl_perfctr_update();
int bgl_perfctr_copy_counters(unsigned long long values[],

size_t size_of_values);
int bgl_perfctr_copy_state(bgl_perfctr_control_t *hw_state,

size_t size_of_buffer);
bgl_perfctr_control_t *bgl_perfctr_hwstate(void);
inline unsigned long long *bgl_perfctr_get_counters(void);
inline void bgl_perfctr_release_counters(void);

G.3 Ways of accessing the counters
As the counters are a shared resource, care must be taken when accessing the
virtual counters. Under normal conditions, the use of the library interface is
straightforward. When there are multiple agents involved in accessing the
counter, substrate application code needs to take this into account; otherwise,
results may appear confusing.

As the virtual counters may be updated by either of the cores and also can be
updated by interval timer controlled interrupts, the value of the virtual counters
may change between a user-induced counter update and a subsequent access
to the memory location of the virtual counter. Depending on the degree of control
users of the library need on this behavior, any of the following calling sequences
can be used.

G.3.1 Counter update and copy-out
A call to the function bgl_perfctr_copy_counters() updates the internal virtual
counters and copies their updated values to the user-provided memory buffer.
The update and copy is made within a lock of the virtual counters to guarantee
coherence.
 Appendix G. Hardware counters 375

G.3.2 Counter update and immediate access
In cases where the user knows that no other agent will be accessing the counters
in between an initiated virtual counter update and a read-out of the counter
values, or if such updates will have negligible influence on the results, the
bgl_perfctr_update() function can be used. After the update, the user can read
the current values of the virtual counters from the SRAM memory region. The
memory address of the virtual counters are given by
bgl_perfctr_hwstat()->virtual.

There should be only a short code path between the call to the update function
and the read-out of the counters, since further updates to the counters may occur
if user code on the other core executes the update function or if the timed update
feature sets in. With a short code path, such updates will produce a low amount
of update increments to the virtual counters.

G.3.3 Counter update and lock
Advanced users that want complete control of the behavior of the library between
the counter update and counter read-out without taking the overhead of the
bgl_pefctr_copy_counters() function can use the acquire and lock function
provided in bgl_perfctr_get_counters(). This call will acquire a lock of the
virtual counters and then update their content with the current value of the
hardware counters.

While the lock is held, timed interrupt updates of the counters from any core is
automatically disabled and access to the virtual counters from the other CPU
core is blocked. Application code can read the content of the virtual counter
content, as described in the previous section. It is essential that the lock of the
virtual counters is released by the function bgl_perfctr_release_counters().

G.4 Available counter events
Bgl_perfctr provides a static array, BGL_PERFCTR_event_table[], shown in
Example 8-13, with one entry per hardware event on the Blue Gene/L compute
node. This table is indexed using a C enumerated type, the event number and
can be used to find out all details about the event. For each event, the field
num_encodings denotes in how many different locations of the hardware the
event can be located. For each such location, the encoding[] field lists the
counter group, the counter number within the group, and the actual code used to
program the event in that location.

The event table also provides fields for the mnemonic name of the event and a
description of the event, to facilitate event number to descriptive string
376 Unfolding the IBM ̂Blue Gene Solution

translations. This table need not be used by the user, but it provides easy and
accurate access to information on possible counter allocations and event
descriptions.

Example 8-13 The event information table BGL_PERFCTR_event_table

BGL_PERFCTR_event_encoding {
 unsigned int group; /* Which counter group to use */
 unsigned int counter; /* Which counter {A,B,C} to use */
 unsigned int code; /* Which hw-counter code */
} BGL_PERFCTR_event_encoding_t;

typedef const struct BGL_PERFCTR_event_descr {
 BGL_PERFCTR_event_num_t event_num;
 int num_encodings;
 u_int64_t mapping;
 BGL_PERFCTR_event_encoding_t encoding[BGL_PERFCTR_MAX_ENCODINGS];
 const char *event_name;
 const char *event_descr;
} BGL_PERFCTR_event_descr_t;

BGL_PERFCTR_event_descr_t
 BGL_PERFCTR_event_table[BGL_PERFCTR_NUMEVENTS];

G.5 Correct API usage
The bgl_perfctr library and its API is an abstraction of the underlying hardware.
As such, it shares some of the properties of the physical counters. This becomes
important when used by advanced users in a multi-threaded fashion. Predictable
behavior will be the result when the following recommendations are honored.

G.5.1 Using the second CPU
Calls to the bgl_perfctr library can be made from either CPU on the compute
node. The library does the necessary locking internally to guarantee coherency
of the virtual counters with the hardware counters.

Calls that modify counter control register content can be used on either CPU
core. bgl_perfctr_add_event(), bgl_perfctr_remove_event(),
bgl_perfctr_revoke() work transparently by the internal use of the reference count
in the library. Thus, if the same event is added by both cores, the reference count
of that event will be 2. The event will start counting at the first time the
bgl_perfctr_commit() function is called after the event has been added. The
event will not disappear from the configured counters until the reference count
 Appendix G. Hardware counters 377

has dropped to 0 and a subsequent commit operation has been performed by
any core.

Library initialization is either a local or a global operation, depending on the mode
selected. Initializing the user level counters using the bgl_perfctr_init()
function is equivalent to bgl_perfctr_init_synch with an argument of
BGL_PERFCTR_MODE_LOCAL. In this mode as well as in the other modes, the
virtual counter structure is a shared resource between the CPU cores on the
compute node. In local mode it is the responsibility of the user to make sure that
calls to bgl_perfctr_update() are performed frequently enough to ensure that
the 32-bit hardware counters do not collect more than 232-1 events in between
calls. bgl_perfctr_update() can be called directly, but it can also be called
indirectly using the functions bgl_perfctr_copy_counters() and
bgl_perfctr_copy_state().

Automatic prevention of counter overflow can be achieved by providing the
argument BGL_PERFCTR_MODE_ASYNC or BGL_PERFCTR_MODE_SYNC
to bgl_perfctr_init_synch(). In this mode, a user-level timed interrupt is
installed that executes a virtual counter update within the passing of 232 CPU
cycles.

The two modes differ in their global synchronization behavior. The synchronous
mode executes a global barrier using the global barrier network together with
local synchronization within the node using the CPU lockbox. The asynchronous
mode does not perform this synchronization before starting the interval timer
interrupts. A safety time-out of 5 seconds is used in the global barrier to
safeguard for the cases when the global barrier is not available, for example,
when not all nodes on a partition have user code loaded. The core
synchronization on the local node is performed on all nodes that have two user
applications loaded. This means, that virtual node mode can use the
synchronous mode successfully in all cases where there are at least one process
running on each node. Any nodes with two processes on them will take
appropriate action to guarantee synchronization within the chip in parallel to the
internode synchronization.

G.5.2 Counter start, stop, and reset
In bgl_perfctr there is no explicit start, stop, or reset of a counter. The underlying
hardware counter will start incrementing at the moment the control word is
written into the counter group control register. Start, stop, and reset of counters is
accomplished by means of the update function (or functions) calls that have an
update of the virtual counters as a side effect. This function call establishes a
baseline for the virtual counters to which later returned values from the same
function can be compared.
378 Unfolding the IBM ̂Blue Gene Solution

The PAPI library, which is implemented using bgl_perfctr, provides an API with
full start, stop, and reset functionality.

G.5.3 Locking semantics of bgl_perfctr
The bgl_perfctr interface takes use of two locks internally to guarantee a
coherent view of the counter state. One lock protects updates of the control data
of the library, while the other lock is exclusively used to protect the virtual
counters against incoherent updates. These two locks are allocated from the set
of 64 user-level locks available to user code on Blue Gene/L.

Updates of the virtual counters can take place without acquiring a lock of the
control structure. Likewise, in most cases, modifications to the counter control
registers can take place independently of acquiring a lock of the virtual counters.

The interval timer controlled update of the virtual counters takes use of the virtual
counter lock in the following way: when the interrupt handler is called, it attempts
to get hold of the counter lock. If locking is successful, it updates the counters
and releases the lock. If the handler fails in acquiring the lock, it is because
user-level code, or an interrupt handler on the other CPU core, is performing an
update. In this case, this instance of the handler immediately exits as no further
virtual counter update is necessary.
 Appendix G. Hardware counters 379

380 Unfolding the IBM ̂Blue Gene Solution

acronyms
AIX Advanced Interactive
Executive

APU Auxiliary Processor Unit

BLAS Basic Linear Algebra
Subroutines

BLRTS BlueGene Runtime System

BSS Base Stack Segment

CFD Computational Fluid
Dynamics

CIOD Compute I/O Daemon

CNK Compute Node Kernel

CO Co-processor Node Mode

CSM Cluster System Management

ESSL Engineering and Scientific
Subroutine Library

FEN Front End Node

FMA Floating Point Multiply Add

GPFS General Parallel File System

GPL GNU General Public License

HPL High Performance Linpack

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

JTAG Joint Technical Advisory
Group

LGPL GNU Lesser General Public
License

MMCS Midplane Management
Control System

MPI Message Passing Interface

NAS NASA Advanced
Supercomputing

Abbreviations and
© Copyright IBM Corp. 2005. All rights reserved.
NFS Network File System

NPB NAS Parallel Benchmark

PLB Processor Local Bus

PSSP Parallel Systems Support
Program

RAS Reliability, Availability,
Serviceability

SIMD Single Intruction Multiple Data

SLES SUSE Linux Enterprise
Server

SMP Symmetric Multi Processing

SN Service Node

SP System Parallel

SPMD Single Program Multiple Data

SS Stack Segment

TLB Transaction Lookaside Buffer

VAC Visual Age Compiler

VN Virtual Node Mode
 381

382 Unfolding the IBM ̂Blue Gene Solution

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 385. Note that some of the documents referenced here may be available
in softcopy only.

� Blue Gene/L: Software Installation, Configuration, and Administration,
SG24-6744

� Blue Gene/L: Application Development, SG24-6745

� BlueGene/L: Hardware Installation and Serviceability, ZG24-5002

Other publications
These publications are also relevant as further information sources:

� AIX 5L Version 5.3, Assembler Language Reference, SC23-4923

� MPI - A Message Passing Interface Standard. Message Passing Interface
Forum. June 12, 1995.

� MPI-2 - Extensions to the Message Passing Interface. Message Passing
Interface Forum. July 18, 1997.

� Kerbyson, D. J., Alme, H. J., Hoisie, A., Petrini, F., Wasserman, H. J., and
Gittings, M., “Predictive Performance and Scalability Modeling of a
Large-Scale Application”, Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing.

� Allen, M. P., and Tildesley, D. J., 1989, Computer Simulation of Liquids.
Oxford: Clarendon Press.

� Hockney, R. W., and Eastwood, J. W. 1981, Computer Simulation Using
Particles. McGraw-Hill International.

� Bhanot, et al, “Optimizing Task Layout on the BlueGene/L Supercomputer”,
IBM, September, 2004.
© Copyright IBM Corp. 2005. All rights reserved. 383

� Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O. and
Poinsot, T. “High-order methods for DNS and LES of compressible
multi-component reacting flows on fixed and moving grids”, J. Comp. Phys.
202, 710-736 (2005).

� Faivre, V. and T. Poinsot “Experimental and numerical investigations of jet
active control for combustion applications”, J. of Turb. 5: 025 (2004).

� Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W.,
Prade, B., Kaufmann, P. et Veynante, D. “Compressible Large-Eddy
Simulation of turbulent combustion in complex geometry on unstructured
meshes”, Comb. Flame, 137, 489-505 (2004).

� Prière, C., Gicquel, L., Kaufmann, P. Krebs, W. et Poinsot T. “Predictions of
mixing enhancement for jets in Cross Flows”, J. of Turb. 5:1, 30 (2004).

� C. Angelberger, D. Veynante, and F. Egolfopoulos. “Large Eddy Simulations
of chemical and acoustic forcing of a premixed dump combustor”, Flow,
Turbulence and Combustion, 65(2):205-222, 2000.

� J. Schlüter and T. Schönfeld. LES of jets in cross flow and its application to
gas turbine burners. Flow, Turbulence and Combustion, 65(2):177-203,
2000.

� J. Schlüter. Axi-symmetric and full 3D LES of swirl flows. International
Journal of Computational Fluid Dynamics, 18(3):235-246, 2004.

� LS-DYNA Keyword Reference Manual, and LS-DYNA Theory Manual created
by the Livermore Software Technology Corporation, available online at:

http://www.lstc.com

� R. Car, M. Parrinello, Phys. Rev. Lett., 1985, 55, 2471-2474

� CPMD V3.9, Copyright IBM Corp. 1990-2003, Copyright MPI fur
Festkorperforschung, Stuttgart, 1997-2001

� D. Marx, J. Hutter, Ab-initio molecular dynamics: Theory and implementation,
in: Modern Methods and Algorithms of Quantum Chemistry, J. Grotendorst
(Ed.), NIC Series, Vol. 1, FZ Julich, Germany, 2000

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM BlueGene code download site

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=BGL-BLUEGE
NE
384 Unfolding the IBM ̂Blue Gene Solution

� IEEE “Beat the Heat” article

http://www.spectrum.ieee.org/WEBONLY/publicfeature/may04/0504ther.html#f1

� Cluster System Management information

http://techsupport.services.ibm.com/server/csm

� TotalView parallel debugger from Etnus Inc.

http://www.etnus.com/TotalView/

� Explanation for the kernel and apps. for NAS Parallel Benchmark

http://www.ssscore.org/ssscore/paper/europvmmpi99-morimoto.pdf

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 385

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

386 Unfolding the IBM ̂Blue Gene Solution

Index

Symbols
/bgl 84
/usr/bin 137
/usr/include 137

Numerics
3D mesh 19
3D Poisson 254
3D torus 19

A
addr2line 205
address space 135
addressing modes 87
AIX 44, 61, 65
algebraic simplification 87
aliasing 148
allocating partitions 64
allocation

default 221
heuristic 221
random 221

all-to-all 23
all-to-one 23
alternative mapping 110
AMBER 268
AMBER8 268
annealing 227
ANSI C 131
application guidelines 81
application mapping 208, 230
Application Specific Integrated Circuit 27
arithmetic pipe 163
ASIC 27, 32, 139, 175
assembler 140
ASSERT 94
asynchronous I/O 96
attribute and cross reference 143
automatic mapping 110
automotive 6
Auxiliary Processor Unit 30
AVBP 277
© Copyright IBM Corp. 2005. All rights reserved.
B
backfill 124
bandwidth 19, 44
barrier 23, 260–261
barrier (global interrupt) network 24, 28, 178
Basic Linear Algebra Subroutines 170
benchmarks 249
BG/L console 25
BGLPersonality_numIONodes(p) 194
bgltorus 178
BGWEB 70
big endian 128
bind() 133
BladeCenter 48
BLAS 170, 250
block 79
BLOCKID 103
blocks 72
BLRTS 35
blrts 175
Blue Gene 6
Blue Gene Runtime System 35
Blue Gene/L 208

driver 51
boot scripts 60
bottleneck 58
branch prediction 30
bss 26, 160
Bulk Power Modules 27

C
C 138
C++ 138, 147
capget() 131
capset() 131
Cartesian communicators 231, 235
Cartesian coordinates 232
Chip 14
CIOD 35
ciodb 36, 66
clone() 130
cluster file system 19
Cluster System Management 66
 387

CNK 16, 35, 52, 66, 96, 128–129, 131–133, 138
CO 41, 234
coherent 28
collective 25
collective benchmarks 260
collective network 23, 27, 192
collective performance 188
Communication Coprocessor Mode 102
communication delays 212
communication pattern 225
communication time 210
communications locality 114
compile 136
compiler 81

directives 92
features 96
flags 101
optimization 87
variables 77

complex integer 30
computation time 210
compute card 7, 14
Compute node 40
compute node 16–17, 22, 42, 160
Compute Node Kernel 16, 41, 52, 135, 142
compute node kernel 41
configuration database 36
connectivity graph 230
console mode 26
constant expressions 87
control flow 87
control network 54
controlling jobs 78
co-processor 29, 127, 218
co-processor mode 26, 41, 130, 190, 219
crash studies 6
cross compiling 24
crossbar 212
cross-compiling 18, 85
CSM 66

D
Daemons 36
data 160
data layout 165
data segment 26
database console 104
daxpy 158

DB2 26, 52
DB2 environment 76
DDR 166
dead code 87
deadlock 26, 179
debugger 52, 117, 127
Debugging 196
debugjob 200
Deep Computing 7
default 227
default allocation strategy 111
DFT 172
DGEMM 251
diagnostic 136

report 151
test 75

directories 63
discovery 79
division 159
DL_POLY 262, 267
DO 94
domain decomposition 224
Double floating point unit 33
double FPU 27, 139, 146, 150
DS4000 44
DS4500 44
dump_proctable 200
dynamic linking 96

E
Eager limit 241
EDRAM 27
electric power 7
electro-magnetic interference 4
engineering 5
Engineering and Scientific Subroutine Libraries 52
environment variables 75
environmental database 36
Environmental queries 73
ESSL 52, 170–171
EtherChannel 53
exec() 129
explicit mapping 110

F
Fast Fourier Transform 172
FEN 46, 64, 66, 124
FFT library 172
388 Unfolding the IBM ̂Blue Gene Solution

file I/O 16, 18
File server 17
file system 16, 42–44, 48, 56, 131
firewall 53, 64
firmware 50
floating point 6
floating point register 33
floating point registers 163
floating point unit 29
Float-Point Unit 27
floor space 7
fluid dynamics 285
FMA 251
fork() 129
Fortran 86, 138, 168, 270
FPU 27, 33
FPU counters 119
front end 16
Front end node 17
front end node 18, 24, 46–49, 58, 65, 84, 117, 138
function calls 197
Functional network 17
functional network 15–16, 24, 53, 57
fundamental problems 5

G
gdb 117, 198–200
gdbserver 198–199, 201
General Parallel File System 25, 52
getppid() 130
getpriority() 131
getrusage() 137, 174
gettimeofday() 174
GI 178
gigabit network 27
GLIBC 99
global file system 16, 18
global interrupt 25, 28
global interrupt network 191
glue code 178
GNU C library 99
GNU debugger 117, 198
GPFS 19, 25, 43–44, 52, 57, 60
gprof 118–119
Grand Challenge 5
graph coloring register 87
grid 5, 209
GUI 65

H
hardware configuration 79
hardware counters 118, 175
Hardware Management Console 47
hardware monitoring 66
Hardware Performance Monitor 121
heap 160–161
heap area 26
heat transfer 285
heuristic 221, 227, 231
heuristic map 222
High Performance Computing 7
High performance network 19
High Performance Switch 213, 254
HPL 250
HPMCOUNT 119
hpmcount 121
Hybrid node mode 41
hypercube 5

I
I/O card 15
I/O node 15–17, 35, 42–43, 56, 58, 60, 132, 160,
166, 194
I/O operations 15
I/O processors 15
I/O scaling 59
idoproxydb 36, 66
ile I/O 259
infinite loop 26
instruction cache 30
instrumentation 118
Intel® MPI Benchmarks 258
interconnect 210, 213
interconnects 4
Interprocedural analysis 90
inter-task communication 221, 230
intrinsic functions 159
invariant code 87
ioctl() 131
ionode.README 60
ioperm() 131
ipc() 131

J
Job 18
Job failure 26
job management 83, 123
 Index 389

job status 67
JS20 50
JTAG 27, 55
JTAG network 24
jumbo frames 54

L
L1 cache 158, 163–164
L2 cache 165
L3 cache 158, 165–166
latency 19
libc 137
libg.a 99
libieee.a 99
libmass.a 169
libmassv.a 169
link 136
link aggregation 53
Linpack 42, 250–251
Linux 44, 61
list bglblock 199
little endian 128
llbgljob 126
llcancel 126
llstatus 124
load/store pipeline 30
load/store unit 139
LoadLeveler 25, 52, 78, 84, 102, 123
locality 227, 230
Loop distribution 89
loop fusion 89
Loop interchange 89
Loop nest canonization 89
LPAR 18, 47
LS-DYNA 285

M
Mahattan Distance 210
makefile 138
management software 36
Manhattan distance 186, 210
mapfile 218, 220, 223
mapping 135, 193, 208, 215, 217, 219, 221

automated 211
automatic methods 220
file 115
manual 228
methods 223, 226

MPI tasks 109
random 228
scenarios 211

mappings 221
MASS 168–169
massively parallel 14
massively parallel processing 4
MASSV 100, 168
math libraries 168
MCP 35
memory alignment 146
memory bandwidth 167
memory conflicts 146
memory management 160
memory protection mechanisms 136
memory subsystem 32
mesh 5, 21, 110, 208, 210, 212, 214–215, 227,
237, 261
Message Passing Interface 85, 176
message routing 241
message traffic 210
midplane 7, 15, 25, 219
Midplane Management Control System 35–36
MIO 122
misalignment 153
MMCS 35–36, 66, 76, 78, 198–200
MMCS variables 76
mmcs_db_console 78, 80
mmcs_db_server 36, 66
modular I/O library 122
monitoring 55
monitoring scripts 67
Moore's Law 8
MPI 23, 52, 78, 85–86, 102, 107, 135, 176, 178,
181, 187–188, 224, 250, 260, 264

all-to-all communication 239
collective communications 188
eager protocol 185
library 135, 232
point-to-point communications 184
rank 178
rendezvous protocol 185
short protocol 185
topology 109, 231

MPI_Barrier() 189, 260
MPI_Bsend() 187
MPI_Comm_rank() 236
MPI_Init() 236
MPI_Send() 187
390 Unfolding the IBM ̂Blue Gene Solution

MPI2 177
MPICH2 178
MPIcollectives 178
MPIRUN 78
mpirun 25, 76, 78, 102, 107–108, 115–116, 124,
134, 177, 201, 217, 233, 256, 286
MPIRUN variables 76
MPP 4–5
multi-byte data 128
multigrid kernel 254
multi-hop communications 208
multiple-accumulate 30
multiply 30

N
NAS Parallel Benchmarks 253
Network 44
network bandwidth 44
network fabric 14
network link 19
NFS 18, 25, 43–44, 57–58, 60, 192
NFS server 58
nice() 131
NIM 50
node card 7, 15, 42
node ratio 42
non-blocking 53
non-preemptable 129
NPB 253
NSD 44, 59
number of hops 214

O
object 143
object code 142
Oedipus 33
one-to-all 23
one-to-one mapping 220
OpenSSH 64–65
operational database 36
optimization 86
option 143

P
paging 96, 135
PAPI 119
parallel applications 81, 132, 176

Parallel Basic Linear Algebra Subprograms 170
parallel debugger 117
parallel environment 83, 134
parallel execution 19
parallel job 107
parallel program 208, 210
parallel tuning 81
partition 18, 25, 79, 107
partition shape 218
PATH 77
PC440 165
PeekPerf 121
performance profile 142
persistent storage 16
Petaflop 7
physical address space 135
PingPong 259
pipeline 30
poe 134
POSIX 131
power consumption 4
POWER4 33, 46
POWER5 33, 46
PowerPC 27–28
PowerPC 440 28–29
PPC440 18, 144, 146, 164
prctl() 131
prefetching engines 164
printf() 196
process and thread creation 129
process management interface 178
processor set 194
prof 118
Profiling 118
prototype 147
ps 196
pseudo-assembler 143, 153
ptrace() 131

Q
quadword 30

R
Rack 15
rack 7
RAM 135
random 227
rank 236
 Index 391

RAS 26–27, 37
read only memory 96
Redbooks Web site 385

Contact us xvii
Reliability, Availability, Serviceability 26
Reliability, Availability, Serviceability (RAS) data-
base 37
remote shell 64
RISC 29
rsh 64
rshd 64
rts_get_timetable() 174
Runtime information queries 72

S
SAGE 224
sbrk(0) 137
scheduling jobs 63
scheduling startegy 124
SDRAM 27
serial code 137
serial program 212
service card 24
service ethernet 54
service network 17, 24
service node 16–18, 26, 45–48, 50, 53, 56, 58,
64–65, 103
service node req 54
setblockinfo 79
setdebuginfo 200
shared file system 84
SIGSEGV 96
SIMD 28, 33, 139–142, 150, 164–165, 172
Simple integer 30
simulated annealing 222, 227
simulations 6
single program, multiple data 177
single system image 5
Single-Instruction-Multiple-Data 28
SLES9 46, 50, 64
SMP 28, 130, 136
SN 66
socket 133
software driver 43
software monitoring 66
software pipelining 87
solid mechanics 285
source 143

SOW 17
square root 159
SRAM 27, 165
ssh 84
stack 160–161
stack area 26
Standard data alignment 148
standard error 25
standard output 25
STDIN 134
stdin 96, 125
stdout 129
Storage 44
storage bandwidth 44
storage server 44
strip 161
stub 130
submitjob 104, 107–109, 134
supercomputer 1
supercomputing 3
superscalar 29
SUSE 46
swap 96
System 15
system calls 35, 127–128, 133, 137
System-on-a-chip 27

T
telnet 64
telnetd 64
thread-compliant 177
time() 174
timer calls 127
timers 133
times() 174
TLB 160
toolchain 97
top 196
Toronto Portable Optimizer 140
torus 5, 20, 25, 110, 116, 135, 178, 208–210, 214,
226–227, 233, 240

Adaptive routing 184
Deterministic routing 184
network 110, 184

TotalView 117
tree 178
trigger constant 92
392 Unfolding the IBM ̂Blue Gene Solution

U
Universal Performance Counter 118
unrolling loops 156
user environment 84

V
variables 63, 75
vectorization 89
versioning 149
Vienna FFT 172
virtual address space 134, 160
virtual memory 135
virtual node 41, 127, 130, 176, 190, 218–219
virtual node mode 26, 41, 102
VLAN 53
VN 41
VNC 65
VNC client 66
VNC server 65

W
wait() 130
waitpid() 130

X
XL compilers 83, 138–139, 196, 199
XL FORTRAN 86, 90
xlC 139
xlc 139
xlf 139
xlf90 139
xprofiler 118–119
 Index 393

394 Unfolding the IBM ̂Blue Gene Solution

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Unfolding the IBM

E

s
e
r
v
e
r Blue Gene Solution

®

SG24-6686-00 ISBN 0738493872

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Unfolding the
IBM Eserver

Blue Gene Solution
Understand the Blue
Gene architecture

Select suitable
applications for
implementation

Learn about our
experiences in
porting parallel
applications

The IBM Eserver Blue Gene Solution is a commercial version of the
research project, and Blue Gene/L represents a new entrant in the IBM
Deep Computing Portfolio. This IBM Redbook will help you to design
and create a solution for migrating and porting existing applications to
run on the IBM eServer Blue Gene system. It is targeted to application
designers and programmers working in a High Performance
Computing environment.

The book is composed of three parts. In the first part we present an
architectural overview of the IBM eServer Blue Gene Solution, and
describe the design principles underlying this revolutionary
supercomputer.

In the second part we summarize general guidelines for identifying the
structure of your application. Because simple application recompilation
may not efficiently exploit the massively parallel structure of this
system, we identify and classify the application characteristics you
need to consider for efficient implementation on the IBM eServer Blue
Gene System.

In the final part, we describe several application porting experiences
tested during this project. Note that these experiences are presented
for reference only, and that the applications were not completely
optimized for running on this supercomputer. Nevertheless, they
provide valuable insight into what you can expect when running your
application on a Blue Gene system.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Blue Gene/L - the System
	Chapter 1. Introduction to BG/L
	1.1 Overview of massive parallel processing (MPP)
	1.2 Overview of the IBM eServer Blue Gene Solution
	1.2.1 Blue Gene/L design points
	1.2.2 Where does BlueGene/L fit into the picture

	Chapter 2. Blue Gene/L architecture
	2.1 General architecture
	2.1.1 Nodes (Compute, I/O)
	2.1.2 Blue Gene/L environment
	2.1.3 The service node (one per Blue Gene/L system)
	2.1.4 One or more front-end nodes
	2.1.5 File system
	2.1.6 Communications
	2.1.7 Execution environment
	2.1.8 Handling failures

	2.2 Node hardware
	2.2.1 Processor - System-on-a-chip - the PPC440
	2.2.2 Blue Gene/L PowerPC 440 core overview
	2.2.3 Memory system overview
	2.2.4 Double floating point unit overview

	2.3 Blue Gene/L Software
	2.3.1 System software
	2.3.2 Management software

	Chapter 3. Planning and sizing guidelines
	3.1 Introduction to Blue Gene/L architecture
	3.1.1 Compute nodes and I/O nodes
	3.1.2 Compute node to I/O node ratio
	3.1.3 Building blocks for scalable I/O

	3.2 Service node and front end nodes
	3.2.1 Hardware planning
	3.2.2 Operating system
	3.2.3 Software

	3.3 Network sizing considerations
	3.3.1 Functional network
	3.3.2 Control (service) network

	3.4 File system configuration
	3.4.1 I/O servers
	3.4.2 NFS
	3.4.3 GPFS

	Chapter 4. System management
	4.1 Operating your BG/L
	4.1.1 Remote shell

	4.2 Monitoring (HW, system SW)
	4.2.1 Monitoring logs via the MMCS software
	4.2.2 Monitoring via the databases
	4.2.3 Web interface for the database (BGWEB)

	4.3 User environment (variables, directories)
	4.3.1 Variables for DB2
	4.3.2 Variables for MMCS
	4.3.3 Variables for MPIRUN
	4.3.4 Variables for the compilers
	4.3.5 The /bgl directory (the shared file system)

	4.4 Scheduling (running) jobs
	4.4.1 MPIRUN
	4.4.2 IBM LoadLeveler
	4.4.3 mmcs_db_console

	4.5 Configuration and reconfiguration
	4.5.1 Configuring system software images
	4.5.2 Blocks (Partitions)

	Part 2 BG/L application environment
	Chapter 5. Parallel environment
	5.1 Application development environment
	5.2 XL compilers
	5.2.1 Optimization level
	5.2.2 Machine-specific flags
	5.2.3 High-order transformations
	5.2.4 Interprocedural analysis
	5.2.5 XL FORTRAN new and changed functionality
	5.2.6 Compiler directives for performance
	5.2.7 Directive usage
	5.2.8 Blue Gene/L compiler features
	5.2.9 Blue Gene/L compiler flags

	5.3 Parallel execution environment
	5.3.1 Using mpirun
	5.3.2 Mapping MPI tasks to Blue Gene/L nodes

	5.4 Other application development tools
	5.4.1 The environment on the front-end nodes
	5.4.2 Debuggers
	5.4.3 Profiling
	5.4.4 BG/L hardware counters
	5.4.5 The IBM High Performance Computing Toolkit
	5.4.6 Third-party performance tools

	5.5 Job management
	5.5.1 LoadLeveler

	Chapter 6. Porting applications
	6.1 Does your application fit on Blue Gene/L
	6.1.1 System call summary
	6.1.2 Processes and threads
	6.1.3 File system calls
	6.1.4 I/O-intensive applications
	6.1.5 Networking support
	6.1.6 Timer support
	6.1.7 STDIN support
	6.1.8 Memory
	6.1.9 SMP

	6.2 Single CPU - porting serial applications
	6.2.1 Porting serial code on Blue Gene/L
	6.2.2 Obtaining and understanding an object code listing
	6.2.3 Memory alignment, aliasing, and versioning
	6.2.4 Exploiting the double FPU
	6.2.5 Divide, square root operations, and vector intrinsic functions
	6.2.6 Memory management
	6.2.7 Math libraries
	6.2.8 Performance measurement

	6.3 Porting parallel applications
	6.3.1 The BG/L programming model
	6.3.2 MPI features supported on BG/L
	6.3.3 The BG/L MPI implementation
	6.3.4 MPI point-to-point performance
	6.3.5 MPI collective performance
	6.3.6 Co-processor mode versus virtual node mode

	6.4 I/O operations
	6.4.1 How the I/O works
	6.4.2 Compute nodes mapping to I/O nodes
	6.4.3 Do not use one file per I/O node
	6.4.4 Do not use one task doing all I/O

	6.5 Debugging
	6.5.1 Debugging by printf() or PRINT
	6.5.2 Instrumenting function entry and exit
	6.5.3 Using the GNU debugger
	6.5.4 TotalView
	6.5.5 Debugging parallel programs
	6.5.6 Tracking your memory usage
	6.5.7 Core files and addr2line

	Chapter 7. Massively parallel tuning
	7.1 Application mapping
	7.1.1 Problem description
	7.1.2 Mapping scenarios
	7.1.3 Mapping file semantics in Blue Gene/L
	7.1.4 Automatic mapping methods
	7.1.5 Manual mapping methods
	7.1.6 Mapping experiments
	7.1.7 General guidelines for application mapping
	7.1.8 MPI topologies and Cartesian communicators

	7.2 Limitations on scaling
	7.3 Hints on how to parallelize codes
	7.3.1 All-to-all communication
	7.3.2 Eager limit and message routing

	7.4 Other general suggestions

	Part 3 Application porting examples
	Chapter 8. Applications on Blue Gene
	8.1 Introduction
	8.1.1 General considerations and benchmark applications
	8.1.2 High Performance Linpack (HPL)
	8.1.3 NAS Parallel Benchmarks
	8.1.4 Intel MPI Benchmarks

	8.2 DL_POLY
	8.2.1 Application description
	8.2.2 Planning for the application
	8.2.3 Characteristics of execution
	8.2.4 Scaling and tuning (optimization)

	8.3 AMBER8
	8.3.1 AMBER8 description
	8.3.2 AMBER8 characteristics
	8.3.3 Planning for AMBER8
	8.3.4 Blue Gene/L features
	8.3.5 Scaling and tuning AMBER8

	8.4 AVBP
	8.4.1 Application description
	8.4.2 Planning for the application
	8.4.3 Porting experience
	8.4.4 Scaling and tuning

	8.5 LS-DYNA
	8.5.1 Introduction
	8.5.2 Parallel implementation of LS-DYNA
	8.5.3 Running LS-DYNA on BG/L
	8.5.4 Scalability results for LS-DYNA on Blue Gene/L

	8.6 TRACE
	8.6.1 Application description
	8.6.2 Planning for the application
	8.6.3 Porting experience

	8.7 CPMD
	8.7.1 CPMD description
	8.7.2 Application characterization
	8.7.3 Enablement experience and test results
	8.7.4 Benchmark Data

	8.8 WRF
	8.8.1 Application description
	8.8.2 Characteristics
	8.8.3 Planning for the application
	8.8.4 Porting experience (depending on licensing)
	8.8.5 Scaling and tuning (optimization)

	8.9 Local Model
	8.9.1 Description
	8.9.2 Characteristics
	8.9.3 Planning for LM
	8.9.4 Porting experience
	8.9.5 Scaling and tuning

	Part 4 Appendixes
	Appendix A. BG/L prior to porting code
	Appendix B. BG/L runtime system calls
	B.1 Calls in rts.h
	B.2 Personality data in bglpersonality.h
	B.2.1 The sanity.c example
	B.2.2 Accessing the BG/L runtime information from FORTRAN
	B.2.3 Sanity revisited: sanity.f90

	Appendix C. Floating point instruction set
	C.1 Instruction types specific to BG/L PPC440
	C.2 Additional floating point instructions
	C.2.1 Summary
	C.2.2 Add instructions
	C.2.3 Estimate instructions
	C.2.4 Multiply instructions
	C.2.5 Multiply-add instructions
	C.2.6 Select instruction
	C.2.7 Convert and round instructions
	C.2.8 Compare instruction
	C.2.9 Move instructions
	C.2.10 Load/store instructions

	Appendix D. Some useful utilities
	Users who have allocated partitions
	Active jobs
	Partitions which are defined
	Console environment

	Appendix E. Compiler configuration file
	Sample compiler options file

	Appendix F. Systems comparison
	Blue Gene/L and other contemporary architectures

	Appendix G. Hardware counters
	G.1 Link with bgl_perfctr library on Blue Gene/L
	G.2 API details
	G.3 Ways of accessing the counters
	G.3.1 Counter update and copy-out
	G.3.2 Counter update and immediate access
	G.3.3 Counter update and lock

	G.4 Available counter events
	G.5 Correct API usage
	G.5.1 Using the second CPU
	G.5.2 Counter start, stop, and reset
	G.5.3 Locking semantics of bgl_perfctr

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

