
IBM Research

© 2008 IBM Corporation

IBM High Performance Computing Toolkit

I-Hsin Chung
IBM T.J. Watson Research Center
ihchung@us.ibm.com

IBM Research

© 2008 IBM Corporation

What is it?
• IBM long-term goal:

• An automatic performance tuning framework
• Assist users to identify performance problems
• Provide possible solutions

• A common application performance analysis environment across all HPC
platforms

• Look at all aspects of performance (communication, memory, processor,
I/O, etc) from within a single interface

• Where we are: one consolidated package
• One consolidate package (AIX, Linux/Power)
• Tools for MPI, OMP, processor, memory etc
• Operate on the binary and yet provide reports in terms of source-level

symbols
• Dynamically activate/deactivate data collection and change what

information to collect
• One common visualization GUI

IBM Research

© 2008 IBM Corporation

IBM High Performance Computing Toolkit on Blue Gene

MPI performance: MPI Profiler/Tracer

CPU performance: Xprofiler, HPM

Threading performance: OpenMP profiling

I/O performance: I/O profiling

Visualization and analysis: PeekPerf

IBM Research

© 2008 IBM Corporation

Supported Platforms

AIX

Linux

– PowerPC

– Blue Gene /L and Blue Gene /P

– Intel x86 & AMD (planned)
Eclipse integration

Windows (Intel/AMD) + Mac (coming soon)

– Offline Peekperf visualization capability only

IBM Research

© 2008 IBM Corporation5

AGENDA

• Xprofiler: call-graph profiling

• HPM: hardware counter data

• MPI Profiler/Tracer: MPI profiling

• PompProf: OpenMP profiling

• MIO: I/O profiling and optimization

• IBM HPC Toolkit

• Questions/Comments

IBM Research

© 2008 IBM Corporation6

XProfiler

IBM Research

© 2008 IBM Corporation

Xprofiler

• Visualizer CPU time profiling data
• Compile and link with -g -pg flags + optimization
• Code execution generates gmon.out file

• MPI applications generate gmon.out.1, …,
gmon.out.n

• Analyze gmon.out file with Xprofiler

• xprofiler a.out gmon.out
• Important factors:

• Sampling interval is in the order of ms
• Profiling introduces overhead due to function calls

IBM Research

© 2008 IBM Corporation

Xprofiler - Initial View

Clustered
functions

Library
calls

IBM Research

© 2008 IBM Corporation

Xprofiler - Unclustering Functions

on “Filter” menuon “Filter” menu
select “Uncluster

Functions”

IBM Research

© 2008 IBM Corporation

Xprofiler - Full View - Application and Library Calls

IBM Research

© 2008 IBM Corporation

Xprofiler - Hide Lib Calls Menu

Now select
“Hide All

Library Calls”

Can also filter by:
Function Names,
CPU Time,
Call Counts

IBM Research

© 2008 IBM Corporation

Xprofiler - Application View

• Width of a bar:
time including
called routines

• Height of a bar:
time excluding
called routines

• Call arrows
labeled with
number of calls

• Overview
window
for easy
navigation
(View
Overview)

IBM Research

© 2008 IBM Corporation

Xprofiler: Zoom In

IBM Research

© 2008 IBM Corporation

Xprofiler: Flat Profile

• Menu Report provides usual gprof reports plus some extra ones

– Flat
Profile

– Call
Graph
Profile

– Function
Index

– Function
Call
Summary

– Library
Statistics

IBM Research

© 2008 IBM Corporation

Xprofiler: Source Code Window

• Source code
window displays
source code
with time profile
(in ticks=0.01 sec)

• Access

– Select function
in main display

– context menu

– Select function
in flat profile

– Code Display

– Show Source
Code

IBM Research

© 2008 IBM Corporation

Xprofiler - Disassembler Code

IBM Research

© 2008 IBM Corporation

Xprofiler: Tips and Hints
• monenable()/mondisable() to sample certain regions

• Simplest when gmon.out.*, executable, and source code are in one directory

– Select “Set File Search Path” on “File” menu to set source directory when
source, and executable are not in the same directory

– Can use -qfullpath to encode the path of the source files into the binary

• By default, call tree in main display is “clustered”

– Menu Filter Uncluster Functions

– Menu Filter Hide All Library Calls

• Libraries must match across systems!

– on measurement nodes

– on workstation used for display!

• Must sample realistic problem (sampling rate is 1/100 sec)

IBM Research

© 2008 IBM Corporation18

HPM – HW counter library

IBM Research

© 2008 IBM Corporation

HPM: What Are Performance Counters
• Extra logic inserted in the processor to count specific events

Updated at every cycle
Strengths:

– Non-intrusive
– Very accurate
– Low overhead

Weakness

– Provides only hard counts
– Specific for each processor
– Access is not well documented
– Lack of standard and documentation on what is counted

IBM Research

© 2008 IBM Corporation

HPM: Hardware Counters
• 8 counters on PPC970 and Power4, 6 counters on Power 5/5+

– Several (100+) events per counter
• 48 UPC counters on Blue Gene/L, 328 events
• 256 UPC counters on Blue Gene/P, ~1000 events

• Events can not be selected independently

– PPC970: 41 groups, default: 23
– Power 4: 64 groups, default: 40
– Power 5: 140 groups (AIX 5.2), 148 groups (AIX 5.3),

default 137
– Power 5+: 152 groups, default 145
– Blue Gene/L: 16 groups
– Blue Gene/P: 4 groups

IBM Research

© 2008 IBM Corporation

• Derived metrics allow users to correlate the behavior of the
application to one or more of the hardware components

• One can define threshold values acceptable for metrics and
take actions regarding program optimization when values
are below the threshold

HPM: Hardware Counters
• Cycles

• Instructions

• Floating point instructions

• Integer instructions

• Load/stores

• Cache misses

• TLB misses

• Branch taken / not taken

• Branch mispredictions

• Useful derived metrics
– IPC - instructions per cycle
– Float point rate (Mflip/s)
– Computation intensity
– Instructions per load/store
– Load/stores per cache

miss
– Cache hit rate
– Loads per load miss
– Stores per store miss
– Loads per TLB miss
– Branches mispredicted %

IBM Research

© 2008 IBM Corporation

Derived Metrics

Utilization rate
Total FP load and store operations
MIPS
Instructions per cycle/run cycle/load
store
% Instructions dispatched that
completed
Fixed point operations per Cycle or
load/stores
Branches mispredicted percentage
number of loads per load miss
number of stores per store miss
number of load/stores per L1 miss
L1 cache hit rate
number of loads per TLB miss
number of loads/stores per TLB miss

Total Loads from L2

L2 load traffic

L2 load bandwidth per processor

Estimated latency from loads from L2

% loads from L2 per cycle

Total Loads from local L2

local L2 load traffic

local L2 load bandwidth per processor

Estimated latency from loads from local L2

% loads from local L2 per cycle

Total Loads from L3

L3 load traffic

L3 load bandwidth per processor

Estimated latency from loads from L3

…

IBM Research

© 2008 IBM Corporation

CPU/Memory Performance

Instrumentation library

Provides performance information for instrumented
program sections

Supports multiple instrumentation sections

Supports MPI, threading and mixed mode

Multiple sections may have the same ID

Run-time performance information collection

IBM Research

© 2008 IBM Corporation

LIBHPM
• Allows to go in the source code and instrument different sections

independently

• Supports Fortran, C, and C++

• For each instrumented section provides:
• Total count & duration (wall clock time)

• Hardware performance counters information

• Derived metrics

• Provides resource usage statistics for the total execution of the
instrumented program

• Supports:
• MPI, OpenMP, & pThreads
• Multiple instrumentation points
• Nested instrumentation
• Multiple calls to an instrumented point

IBM Research

© 2008 IBM Corporation

Event Sets

4 sets (0-3); ~1000 events
Information for

– Time
– FPU
– L3 memory
– Processing Unit
– Tree network
– Torus network

IBM Research

© 2008 IBM Corporation

Instrumentation section

hpmInit(tasked, "my program");

hpmStart(1, "outer call");

do_work();

hpmStart(2, "computing meaning of life");

do_more_work();

hpmStop(2);

hpmStop(1);

hpmTerminate(taskID);

IBM Research

© 2008 IBM Corporation

Use MPI
taskID with

MPI programs

Using LIBHPM

• Declaration:

• Use:
– #include f_hpm.h

call f_hpminit(0, “prog”)

call f_hpmstart(1, “work”)

do

call do_work()

call f_hpmstart(22, “more work”)
– call compute_meaning_of_life()

call f_hpmstop(22)

end do

call f_hpmstop(1)

call f_hpmterminate(0)

IBM Research

© 2008 IBM Corporation

OpenMP/Threading

Thread-safe libhpm supports OpenMP and threaded
applications.

A thread-safe linker invocation, such as xlc_r and xlf_r,
should be used or

libpthreads.a must be included in the list of libraries.

IBM Research

© 2008 IBM Corporation

HPM: Multi-thread Support

1

2 3 4 5 6 7

1

8

hpmTstarthpmTstarthpmTstart

hpmTstophpmTstophpmTstop

hpmStart

hpmStop

IBM Research

© 2008 IBM Corporation

Functions

hpmInit(taskID, progName) / f_hpminit(taskID, progName)
– taskID is an integer value indicating the node ID.
– progName is a string with the program name.

hpmStart(instID, label) / f_hpmstart(instID, label)
– instID is the instrumented section ID. It should be > 0 and <= 100

(can be overridden)
– Label is a string containing a label, which is displayed by PeekPerf.

hpmStop(instID) / f_hpmstop(instID)
– For each call to hpmStart, there should be a corresponding call to

hpmStop with matching instID

hpmTerminate(taskID) / f_hpmterminate(taskID)
– This function will generate the output. If the program exits without

calling hpmTerminate, no performance information will be generated.

IBM Research

© 2008 IBM Corporation

Overhead

libhpm collects information and performs summarization during run
time

– there can be considerable overhead if instrumentation
sections are inserted inside inner loops.

Guideline
– If the overhead is several orders of magnitude smaller than

the total duration of the instrumented section, you can
safely ignore the overhead timing.

– If the overhead is in the same order as the total duration of
the instrumented section, you should be suspicious of the
results.

– If the overhead is within 20% of the measured wall clock
time, a warning is printed to the ASCII output file.

IBM Research

© 2008 IBM Corporation

C and C++ example

declaration:
#include "libhpm.h"
use:
hpmInit(tasked, "my program");
hpmStart(1, "outer call");
do_work();
hpmStart(2, "computing meaning of life");
do_more_work();
hpmStop(2);
hpmStop(1);
hpmTerminate(taskID);

IBM Research

© 2008 IBM Corporation

Fortran example

declaration:
#include "f_hpm.h"
use:
call f_hpminit(taskID, "my program")
call f_hpmstart(1, "Do Loop")
do …
call do_work()
call f_hpmstart(5, "computing meaning of life");
call do_more_work();
call f_hpmstop(5);
end do
call f_hpmstop(1)
call f_hpmterminate(taskID)

IBM Research

© 2008 IBM Corporation

Multithreaded program

!$OMP PARALLEL
!$OMP&PRIVATE (instID)
instID = 30+omp_get_thread_num()
call f_hpmtstart(instID, "computing meaning of life")
!$OMP DO
do ...
do_work()
end do
call f_hpmtstop(instID)
!$OMP END PARALLEL

If two threads use the same ID numbers for call to hpmTstart or hpmTstop, libhpm exits with
the following error message:

– hpmcount ERROR - Instance ID on wrong thread

IBM Research

© 2008 IBM Corporation

Output

HPM_OUTPUT_NAME
The name <name> is expanded into different file names:

– <name>.hpm is the file name for ASCII output, which is
a one-to-one copy of the screen output.

– <name>.viz is the file name for XML output.

HPM_UNIQUE_FILE_NAME
– The following string is inserted before the last dot (.) in the

file name:
– _<hostname>_<process_id>_<date>_<time>

IBM Research

© 2008 IBM Corporation

Considerations for MPI parallel programs

HPM_AGGREGATE
– does aggregation
– restricting the output to a subset of MPI tasks
– takes a value, which is the name of a plug-in that

defines the aggregation strategy

plug-in
– a shared object
– distributor and aggregator

IBM Research

© 2008 IBM Corporation

Distributor

A subroutine that determines the MPI task ID

Sets or resets environment variables accordingly

Environment variable can be any environment variable

The distributor is called before any environment
variable is evaluated by HPM

IBM Research

© 2008 IBM Corporation

Aggregator

Aggregation of the hardware counter data across the
MPI tasks

After the hardware counter data is gathered

Before the data is printed

Before the derived metrics are computed

Check Redbook for detailed interface description

IBM Research

© 2008 IBM Corporation

Plug-in shipped with HPCT

mirror.so

– the plug-in that is called when no plug-in is requested.

loc merge.so

– does a local merge on each MPI task separately

single.so

– does the same as mirror.so, but only on MPI task 0. The
output on all other tasks is discarded.

average.so

– a plug-in for taking averages across MPI tasks

IBM Research

© 2008 IBM Corporation

Hardware Counter Performance Visualization

IBM Research

© 2008 IBM Corporation41

MPI Profiler/Tracer

IBM Research

© 2008 IBM Corporation

Message-Passing Performance
MPI Profiler/Tracer

– Implements wrappers around MPI calls using the PMPI interface
• start timer
• call pmpi equivalent function
• stop timer

– Captures MPI calls with source code traceback

– No changes to source code, but MUST compile with -g

– Microsecond order of magnitude overhead per MPI call

– Does not synchronize MPI calls

– Compile with –g and link with libmpitrace.a

– Generate XML files for peekperf

IBM Research

© 2008 IBM Corporation

Message-Passing Performance

MPI Tracer
–Captures “timestamped” data for MPI calls

with source traceback

–Provides a color-coded trace of execution

–Very useful to identify load-balancing
issues

IBM Research

© 2008 IBM Corporation

Compiling and Linking

Consider turning off or having a lower level of optimization (-O2, -
O1,...)

– High level optimization affects the correctness of the
debugging information and can also affect the call stack
behavior.

To link the application with the library
– The option -L/path/to/libraries, where /path/to/libraries is

the path where the libraries are located
– The option -lmpitrace, which should be before the MPI

library -lmpich, in the linking order
– The option -llicense to link the license library

IBM Research

© 2008 IBM Corporation

Environment Flags
TRACE_ALL_EVENTS (default yes)

– saves a record of all MPI events one after MPI Init(), until the
application completes or until the trace buffer is full.

– By default, for MPI ranks 0-255, or for all MPI ranks, if there are
256 or fewer processes in MPI_COMM_WORLD.

– Alternative: trace_start/stop()
MAX_TRACE_EVENTS (Default: 30,000)
TRACE_ALL_TASKS

– Set to “yes” to trace all tasks/ranks
MAX_TRACE_RANK
TRACEBACK_LEVEL (Default: 0)

– Level of trace back the caller in the stack
– Used to skipped wrappers

TRACE_SEND_PATTERN
– Has to set to “yes” to trace communication pattern (e.g., Average hops)
– AverageHops = sum(Hopsi × Bytesi)/sum(Bytesi)

IBM Research

© 2008 IBM Corporation

MPI Profiler Output

IBM Research

© 2008 IBM Corporation

MPI Profile Visualization

IBM Research

© 2008 IBM Corporation

MPI Tracer output

IBM Research

© 2008 IBM Corporation

MPI Trace Visualization

IBM Research

© 2008 IBM Corporation

MPI Message Size Distribution

MPI Function #Calls Message Size #Bytes Walltime

MPI_Comm_size 1 (1) 0 ... 4 0 1E-07

MPI_Comm_rank 1 (1) 0 ... 4 0 1E-07

MPI_Isend 2 (1) 0 ... 4 3 0.000006

MPI_Isend 2 (2) 5 ... 16 12 1.4E-06

MPI_Isend 2 (3) 17 ... 64 48 1.3E-06

MPI_Isend 2 (4) 65 ... 256 192 1.3E-06

MPI_Isend 2 (5) 257 ... 1K 768 1.3E-06

MPI_Isend 2 (6) 1K ... 4K 3072 1.3E-06

MPI_Isend 2 (7) 4K ... 16K 12288 1.3E-06

MPI_Isend 2 (8) 16K ... 64K 49152 1.3E-06

MPI_Isend 2 (9) 64K ... 256K 196608 1.7E-06

MPI_Isend 2 (A) 256K ... 1M 786432 1.7E-06

MPI_Isend 1 (B) 1M ... 4M 1048576 9E-07

MPI Function #Calls Message Size #Bytes Walltime

MPI_Irecv 2 (1) 0 ... 4 3 4.7E-06

MPI_Irecv 2 (2) 5 ... 16 12 1.4E-06

MPI_Irecv 2 (3) 17 ... 64 48 1.5E-06

MPI_Irecv 2 (4) 65 ... 256 192 2.4E-06

MPI_Irecv 2 (5) 257 ... 1K 768 2.6E-06

MPI_Irecv 2 (6) 1K ... 4K 3072 3.4E-06

MPI_Irecv 2 (7) 4K ... 16K 12288 7.1E-06

MPI_Irecv 2 (8) 16K ... 64K 49152 2.23E-05

MPI_Irecv 2 (9) 64K ... 256K 196608 9.98E-05

MPI_Irecv 2 (A) 256K ... 1M 786432 0.00039

MPI_Irecv 1 (B) 1M ... 4M 1048576 0.000517

MPI_Waitall 21 (1) 0 ... 4 0 1.98E-05

MPI_Barrier 5 (1) 0 ... 4 0 7.8E-06

IBM Research

© 2008 IBM Corporation

Communication Summary

Communication summary for all tasks:

minimum communication time = 0.015 sec for task 0
median communication time = 5.016 sec for task 30
maximum communication time = 5.016 sec for task 20

taskid xcoord ycoord zcoord procid total_comm(sec) avg_hops
0 0 0 0 0 0.015 1
1 1 0 0 0 5.016 1
2 2 0 0 0 5.016 1
3 3 0 0 0 5.016 4
4 0 1 0 0 5.016 1
5 1 1 0 0 5.016 1
6 2 1 0 0 5.016 1
7 3 1 0 0 5.016 4
8 0 2 0 0 5.016 1
9 1 2 0 0 5.016 1
10 2 2 0 0 5.016 1
11 3 2 0 0 5.016 4
12 0 3 0 0 5.016 1
13 1 3 0 0 5.016 1
14 2 3 0 0 5.016 1
15 3 3 0 0 5.016 7
16 0 0 1 0 5.016 1
… … … … … … …

∑
∑ ×

=

i
i

i
ii

Bytes

BytesHops
sAverageHop

IBM Research

© 2008 IBM Corporation

Configuration

Reduce data volume
– The volume of trace data can be controlled
– The cost or overhead to collect, transfer and store will

be reduced significantly.
– Helping to solve the scalability issue

Provide flexibility
– Help user focus on interesting points
– Can be used as a basis towards automatic performance

tuning.

IBM Research

© 2008 IBM Corporation

Existing MPI profiling/tracing tool

Program execution

Trace
Buffer

Trace
Buffer

MPI library

TraceTrace

Derived
Metrics

Derived
Metrics

MPI function calls

MPI Profiling tool

IBM Research

© 2008 IBM Corporation

Implementation Example – Programmable MPI
profiling/tracing tool

User defined output

Program execution

Record trace? Trace
Buffer

Trace
Buffer

MPI library

TraceTrace

Derived
Metrics

Derived
Metrics

MPI function calls MPI_Finalize

Utility functions

Yes

Yes
Output trace?

MPI Profiling tool

IBM Research

© 2008 IBM Corporation

Configuration Functions

MT_trace_event()
– Called by every profiled MPI functions
– Decide whether the information should be logged

MT_output_trace()
– Called in MPI_Finalize()
– Decide whether the node should output the trace collected

MT_output_text()
– Called in MPI_Finalize()
– Used for customize performance data output (e.g., user-defined

metrics)

IBM Research

© 2008 IBM Corporation

Utility functions

Profile

Profiler

User

Application

Environment

Software specific info.
– Code segment

“Tool factor”
– Memory usage

System info.
– Node location

User preference
– User-defined metrics

IBM Research

© 2008 IBM Corporation

Utility Functions

Help user configure the profiling/tracing tool

Information include
– MPI functions (call counts, size/distance of data transferred)

– Time

– Memory usage

– Compute node environment (coordinates…)

– Statistics

IBM Research

© 2008 IBM Corporation

Utility Functions

long long MT_get_mpi_counts(int); /* number of calls for a MPI */
double MT_get_mpi_bytes(int); /* size of data tranfer for a MPI */
double MT_get_mpi_time(int); /* time used for a MPI */
double MT_get_avg_hops(void); /* average hops each MPI message
travels */
double MT_get_time(void); /* time from the MPI_Init */
double MT_get_elapsed_time(void); /* time between MPI_Finalize and
MPI_Init */
char *MT_get_mpi_name(int); /* name for a MPI */
int MT_get_tracebufferinfo(struct …); /* info for trace buffer */
int MT_get_memoryinfo(struct …); /* info for the stack/heap */
int MT_get_calleraddress(void); /* info for the caller */
int MT_get_callerinfo(int, struct …); /* get caller detailed info */
void MT_get_environment(struct …); /* self id info e.g., mpi rank */

IBM Research

© 2008 IBM Corporation

Example Usage

int MT_trace_event(int id) {

/* collect call count distribution */
for (i=0; i< env.nmpi; i++)

event_count[i] = MT_get_mpi_counts(i);

if (compare_distribution(event_count,env.nmpi,0.5) == 1)
return 0; /* no trace recording if

call count distribution stays the same */
else

return 1; /* record trace if new call count distribution */
}

int MT_output_trace(int rank) {
if (rank < 32) return 1;

else return 0;
}

IBM Research

© 2008 IBM Corporation60

Modular I/O (MIO)

IBM Research

© 2008 IBM Corporation

Modular I/O (MIO)

Addresses the need of application-level optimization for I/O.

Analyze and tune I/O at the application level
– For example, when an application exhibits the I/O pattern of

sequential reading of large files

– MIO
• Detects the behavior
• Invokes its asynchronous prefetching module to prefetch user data.

Work in progress - Integration into HPC Toolkit with PeekPerf
capabilities
– Source code traceback

– Future capability for dynamic I/O instrumentation

IBM Research

© 2008 IBM Corporation

Modular I/O Performance Tool (MIO)
• I/O Analysis

– Trace module
– Summary of File I/O Activity + Binary Events File
– Low CPU overhead

• I/O Performance Enhancement Library
– Prefetch module (optimizes asynchronous prefetch and write-behind)
– System Buffer Bypass capability
– User controlled pages (size and number)

• Recoverable Error Handling
– Recover module (monitors return values and errnor + reissues failed

requests)

• Remote Data Server
– Remote module (simple socket protocol for moving data)

IBM Research

© 2008 IBM Corporation

Performance Visualization (work in progress)

reads
writes

JFS performance

4500 15500

vmtune -p20 -P80 -f120 -F128 -r2 -R8

time (seconds)

fil
e

po
si

tio
n

(b
yt

es
)

IBM Research

© 2008 IBM Corporation

MSC.Nastran V2001

Benchmark:
SOL 111, 1.7M DOF, 1578 modes,
146 frequencies, residual flexibility
and acoustics. 120 GB of disk space.

Machine:
4-way, 1.3 GHz p655, 32 GB with 16
GB large pages, JFS striped on 16
SCSI disks.

MSC.Nastran:
V2001.0.9 with large pages,
dmp=2 parallel=2 mem=700mb
The run with MIO used mio=1000mb

Ti
m

e
(s

ec
on

ds
)

6.8 TB of I/O in 26666 seconds is an average of about 250 MB/sec

0

10,000

20,000

30,000

40,000

50,000

60,000

no MIO with MIO

Elapsed
CPU time

IBM Research

© 2008 IBM Corporation65

PompProf

IBM Research

© 2008 IBM Corporation

“Standard” OpenMP Monitoring API?

• Problem:
– OpenMP (unlike MPI) does not define

standard monitoring interface (at SC06 they accepted
a proposal from SUN and others)

– OpenMP is defined mainly by directives/pragmas

• Solution:
– POMP: OpenMP Monitoring Interface
– Joint Development

• Forschungszentrum Jülich
• University of Oregon

– Presented at EWOMP’01, LACSI’01 and SC’01
• “The Journal of Supercomputing”, 23, Aug. 2002.

IBM Research

© 2008 IBM Corporation

Profiling of OpenMP Applications: POMP

• Portable cross-platform/cross-language API to simplify the design and
implementation of OpenMP tools

• POMP was motivated by the MPI profiling interface (PMPI)

– PMPI allows selective replacement of MPI routines at link time

– Used by most MPI performance tools (including MPI Profiler/Tracer)

User Program
Call MPI_Bcast

Call MPI_Send

MPI Library
MPI_Bcast

PMPI_Send

MPI_Send

MPI Library
MPI_Bcast

PMPI_Send

MPI_Send

Profiling Library

MPI_Send

IBM Research

© 2008 IBM Corporation

POMP Proposal
• Three groups of events

– OpenMP constructs and directives/pragmas
• Enter/Exit around each OpenMP construct

– Begin/End around associated body
• Special case for parallel loops:

– ChunkBegin/End, IterBegin/End, or IterEvent instead of Begin/End
• “Single” events for small constructs like atomic or flush

– OpenMP API calls
• Enter/Exit events around omp_set_*_lock() functions
• “single” events for all API functions

– User functions and regions

• Allows application programmers to specify and control
amount of instrumentation

IBM Research

© 2008 IBM Corporation

1: int main() {
2: int id;
3:
4: #pragma omp parallel private(id)
5: {
6: id = omp_get_thread_num();
7: printf("hello from %d\n", id);
8: }
9: }

Example: POMP Instrumentation
1: int main() {
2: int id;

3:

4: #pragma omp parallel private(id)
5: {

6: id = omp_get_thread_num();
7: printf("hello from %d\n", id);

8: }

9: }

*** POMP_Init();

*** POMP_Finalize();

*** { POMP_handle_t pomp_hd1 = 0;
*** int32 pomp_tid = omp_get_thread_num();

*** int32 pomp_tid = omp_get_thread_num();

*** }

*** POMP_Parallel_enter(&pomp_hd1, pomp_tid, -1, 1,
*** "49*type=pregion*file=demo.c*slines=4,4*elines=8,8**");

*** POMP_Parallel_begin(pomp_hd1, pomp_tid);

*** POMP_Parallel_end(pomp_hd1, pomp_tid);

*** POMP_Parallel_exit(pomp_hd1, pomp_tid);

IBM Research

© 2008 IBM Corporation

SIGMA-POMP: Performance Monitoring Interface for
OpenMP based on PSIGMA Instrumentation

• Approach
– A POMP implementation using pSigma’s binary

instrumentation and rewriting
– Built on top of pSigma

• Modifies the binary with performance instrumentation
• No source code or re-compilation required

IBM Research

© 2008 IBM Corporation

POMP Profiler (PompProf)

• Profiler for OpenMP application implemented on top of
SIGMA-POMP

• Generates a detailed profile describing overheads and time
spent by each thread in three key regions of the parallel
application:

– Parallel regions

– OpenMP loops inside a parallel region

– User defined functions
–

• Profile data is presented in the form of an XML file that can
be visualized with PeekPerf

IBM Research

© 2008 IBM Corporation

IBM Research

© 2008 IBM Corporation73

Interactive Performance Debugger

IBM Research

© 2008 IBM Corporation

Interactive Performance Debugger

Control instrumentation from the visualization GUI: one
complete framework for performance analysis
Operate on the source code but perform modifications on
the binary
Debugger-like interface
Automatically display collected data
Refine instrumentation (iterative tuning)
Comparison between data and between multiple runs
Graphics capabilities (tables, charts)
Query language for “what-if” analysis

IBM Research

© 2008 IBM Corporation

Structure of the HPC toolkit

pSigma

Binary Application

PeekPerf GUI

Communication Profiler

CPU Profiler

Memory Profiler

Shared-Memory Profiler I/O Profiler

Visualization

Query

Analysis

Instrumented Binary

execution

Binary instrumentation

IBM Research

© 2008 IBM Corporation

Peekperf Main Interface

IBM Research

© 2008 IBM Corporation

Peekperf Main Interface (Cont.)

IBM Research

© 2008 IBM Corporation

Peekperf Main Interface (Cont.)

IBM Research

© 2008 IBM Corporation

Peekperf Main Interface (Cont.)

IBM Research

© 2008 IBM Corporation

• The IBM HPC Toolkit provides an integrated framework
for performance analysis

• Support iterative analysis and automation of the
performance tuning process

• The standardized software layers make it easy to plug in
new performance analysis tools

• Operates on the binary and yet provide reports in terms
of source-level symbols

• Provides multiple layers that the user can exploit (from
low-level instrumentations to high-level performance
analysis)

• Full source code traceback capability
• Dynamically activate/deactivate data collection and

change what information to collect

Summery

	IBM High Performance Computing Toolkit
	What is it?
	IBM High Performance Computing Toolkit on Blue Gene
	Supported Platforms
	AGENDA
	XProfiler
	Xprofiler
	Xprofiler - Initial View
	Xprofiler - Unclustering Functions
	Xprofiler - Full View - Application and Library Calls
	Xprofiler - Hide Lib Calls Menu
	Xprofiler - Application View
	Xprofiler: Zoom In
	Xprofiler: Flat Profile
	Xprofiler: Source Code Window
	Xprofiler - Disassembler Code
	Xprofiler: Tips and Hints
	HPM – HW counter library
	HPM: What Are Performance Counters
	HPM: Hardware Counters
	HPM: Hardware Counters
	Derived Metrics
	CPU/Memory Performance
	LIBHPM
	Event Sets
	Instrumentation section
	Using LIBHPM
	OpenMP/Threading
	HPM: Multi-thread Support
	Functions
	Overhead
	C and C++ example
	Fortran example
	Multithreaded program
	Output
	Considerations for MPI parallel programs
	Distributor
	Aggregator
	Plug-in shipped with HPCT
	Hardware Counter Performance Visualization
	MPI Profiler/Tracer
	Message-Passing Performance
	Message-Passing Performance
	Compiling and Linking
	Environment Flags
	MPI Profiler Output
	MPI Profile Visualization
	MPI Tracer output
	MPI Trace Visualization
	MPI Message Size Distribution
	Communication Summary
	Configuration
	Existing MPI profiling/tracing tool
	Implementation Example – Programmable MPI profiling/tracing tool
	Configuration Functions
	Utility functions
	Utility Functions
	Utility Functions
	Example Usage
	Modular I/O (MIO)
	Modular I/O (MIO)
	Modular I/O Performance Tool (MIO)
	Performance Visualization (work in progress)
	MSC.Nastran V2001
	PompProf
	“Standard” OpenMP Monitoring API?
	Profiling of OpenMP Applications: POMP
	POMP Proposal
	Example: POMP Instrumentation
	SIGMA-POMP: Performance Monitoring Interface for OpenMP based on PSIGMA Instrumentation
	POMP Profiler (PompProf)
	Interactive Performance Debugger
	Interactive Performance Debugger
	Structure of the HPC toolkit
	Peekperf Main Interface
	Peekperf Main Interface (Cont.)
	Peekperf Main Interface (Cont.)
	Peekperf Main Interface (Cont.)
	Summery

